Cho hình thang vuông ABCD có ∠ A = ∠ D = 90 ° , AB = 4cm, BC = 13cm, CD = 9cm. Tính độ dài AD
Bài 1: Hình thang ABCD (AB//CD) có AB=AD+BC. Chứng minh rằng các tia phân giác của các góc C và D gặp nhau tại 1 điểm thuộc đáy AB
Bài 2: Hình thang vuông ABCD (góc A = góc D= 90°)có AB =4cm, CD=9cm, BC=13cm. Tính AD
Bài 3: hình thang vuông ABCD (góc A=góc D=90°)có AB =9cm,CD=15cm, AC=17cm. Tính độ dài cạnh bên
Hình thang vuông ABCD (góc A=góc D=90°) có AB=4cm, CD=9cm, BC=13cm. Tính AD
Từ B kẻ BH _|_DC. Ta có HC=DC-AB=5.
Từ đó tính được BH = \(\sqrt{13^2-5^2}=12\)
Vậy AD=12cm
Hình thang vuông ABCD (góc A=góc D=90°) có AB=4cm, CD=9cm, BC=13cm. Tính AD
Kẻ BH vuông góc DC xong tính HC rồi áp dụng Dịnh lý Py ta go là ra
Cho hình thang vuông ABCD (\(\widehat{A}=\widehat{D}=90^0\)), AB = 4cm, BC = 13cm, CD = 9cm
a) Tính độ dài AD
b) Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường kính là BC
a. Kẻ BE ⊥ CD
Suy ra tứ giác ABED là hình chữ nhật
Ta có: AD = BE
AB = DE = 4 (cm)
Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)
Áp dụng định lí Pitago vào tam giác vuông BCE ta có :
BC2 = BE2 + CE2
Suy ra : BE2 = BC2 – CE2 = 132 – 52 = 144
BE = 12 (cm)
Vậy: AD = 12 (cm)
b. Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD
Cho hình thang vuông ABCD có ∠ A = ∠ D = 90 ° , AB = 4cm, BC = 13cm, CD = 9cm. Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường kính là BC
Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD
Cho hình thang ABCD, AB//CD có góc A=góc D= 90 độ, AB=4cm, CD=9cm, BC=13cm. M là trung điểm của AD. Kẻ BK vuông góc với CD tại K.
a) Tứ giác ABKD là hình gì? Tính KC, BK, AD và AM
b) Chứng minh tam giác ABM đồng dạng với tam giác DMC
c) Tính góc BMC
Cho hình thang vuông ABCD, \(\widehat{A}=\widehat{D}=90\) độ, AB = 4cm, CD = 9cm, BC = 13cm. Gọi M là trung điểm của AD . Kẻ \(MH\perp BC\).
a, Tính độ dài cạnh AD
b, C/minh: \(MH=AD:2\)
Cho hình thang vuông ABCD (A = D = 90 ∘ ) có BC ⊥ BD, AB = 4cm, CD = 9cm. Độ dài BD là:
A. 8cm
B. 12cm
C. 9cm
D. 6cm
Xét tam giác ABD và BDC có:
B A D ^ = D B C ^ = 60 ∘
A B D ^ = B D C ^ (so le trong)
⇒ Δ A B D đ ồ n g d ạ n g Δ B D C g , g ⇒ A B B D = B D D C ⇒ B D 2 = A B . D C = 4.9 = 36 ⇒ B D = 6 c m
Đáp án: D
Cho hình thang vuông ABCD (Góc A=D=90) có hai đường chéo vuông góc với nhau tại O, AB=4cm, CD= 9cm. Chứng minh AD^2= AB.CD, tính độ dài AD