Những câu hỏi liên quan
TN
Xem chi tiết
PN
Xem chi tiết
NH
21 tháng 5 2015 lúc 22:07

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

Bình luận (0)
NH
21 tháng 5 2015 lúc 22:18

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

Bình luận (0)
LT
22 tháng 8 2017 lúc 17:50

x=1 nhe nhap minh di ma ket ban voi minh nhe

Bình luận (0)
DS
Xem chi tiết
HD
Xem chi tiết
DA
7 tháng 1 2017 lúc 18:38

1. Vì \(x^2\ge0\left(\text{ với mọi x}\right)\)(1)

=>\(x^2+2\ge2>0\)

=>\(\left(x^2+2\right)^2>0\)(2)

Từ (1) và (2) =>\(\frac{x^2}{\left(x^2+2\right)^2}\le\frac{0}{\left(x^2+2\right)^2}=0\) hay A\(\le0\)

=> giá trị lớn nhất của A là 0, khi và chỉ khi \(x^2=0\) <=> x=0.

Bình luận (0)
LS
Xem chi tiết
CD
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

Bình luận (0)
H24
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
LS
Xem chi tiết
DL
Xem chi tiết
NT
Xem chi tiết
TT
16 tháng 10 2015 lúc 20:32

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

Bình luận (0)
DD
Xem chi tiết
SN
29 tháng 7 2015 lúc 19:14

1/ \(-9a^2+a+5=-\left(\left(3a\right)^2+2\cdot a\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}\right)=-\left(3a+\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)

Vậy GTLN của biểu thức bằng -19/4

Dấu "=" xảy ra \(\Leftrightarrow\left(3a+2\right)^2=0\Leftrightarrow3a+2=0\Leftrightarrow a=-\frac{2}{3}\)

Bình luận (0)
SN
29 tháng 7 2015 lúc 19:22

2/ \(2a^2+2ab+b^2+2a+5=a^2+2ab+b^2+a^2+2a+5=\left(a+b\right)^2+\left(a^2+2a+1\right)+4=\left(a+b\right)^2+\left(a+1\right)^2+4=0\ge4\)

Vậy GTNN của biểu thứ bằng 4

Dấu "=" xảy ra \(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2=0\Leftrightarrow a+b+a+1=0\Leftrightarrow2a+b+1=0\Leftrightarrow2a=-1-b\Leftrightarrow a=-\frac{1+b}{2}\)

Bình luận (0)
LD
8 tháng 6 2016 lúc 17:02

4/ Ta có:

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\) ví x, y dương

\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{\frac{1}{4}}=8\)

Dấu bằng xảy ra khi và chỉ khi: x=y

Bình luận (0)