cho ba so duong a,b,c thoa man: a/5=b/7=c/3 va a^2+b^2-c^2=585 hoi a+b+c=
cho 3 so a,b,c la so nguyen . Trong do co 1 so nguyen am , 1 so nguyen duong va 1 so bang 0 , thoa man IaI=b^2.(b-c) . Hoi a,b,c thuoc loai so nao
a) cho 2 stn a va b voi a<b thoa man 3(a+b) =5(a-b)
tim thuong cua 2 so
b) Tim cac so Nguyen Duong a, b, c biet rang : a3-b3-c3 =3abc va a2=2(b+c)
Cho a,b,c la ba so thuc duong thoa man (a^2).(b+c)=(b^2).(a+c)=20172018.tinh (c^2).(a+b)
Cho 3 so duong a,b,c thoa man ab+bc+ac=3abc.Chung minh(a/a2+bc)+(b/b2+ac)+(c/c2+ba)<=3/2
tim cac so nguyen duong a,b,c thoa man a+b+c=91 va b^2=a*c
cho cac so duong a,b,c thoa man (a^2+b^2+c^2)^2>2*(a^4+b^4+c^4)
cm rang a,b,c la do dai ba canh cua tam giac.
(a2+b2+c2)2>2(a4+b4+c4)
<=> a4 + b4 + c4+ 2a2b2 + 2a2c2 + 2b2c2 > 2(a4 + b4 + c4)
<=> a4 + b4 + c4 - 2a2b2 - 2a2c2 - 2b2c2 < 0
<=> (a2 - b2 - c2)2 - 4b2c2 <0
<=> (a2 - b2 - c2)2 <4b2c2
<=> a2 - b2 - c2<4b2c2
<=> a2 < (b+c)2
<=> a < b+c ( a,b,c >0)
CMTT với b và c ta có
b < a + c
c< b + a
>>> ĐPCM
bạn oi tra loi gium cau hoi tren minh voi câu hình thang kìa đi ma năn nỉ đó mà
cho a,b,c la ba so duong thoa man a+b+c=1 CMR:c+ab/a+b + a+bc/b+c + b+ac/a+c \(\ge\) 2
Áp dụng BĐT AM-GM ta có:
\(VT=\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c}\)
\(=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)
\(=\dfrac{ac+bc+c^2+ab}{a+b}+\dfrac{a^2+ab+ac+bc}{b+c}+\dfrac{ab+b^2+bc+ac}{a+c}\)
\(=\dfrac{\left(b+c\right)\left(c+a\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)
\(\ge2\left(a+b+c\right)=2\left(a+b+c=1\right)\)
Khi \(a=b=c=\dfrac{1}{3}\)
cau 1 ,cho m,n thuoc n va p la so nguyen to thoa man p/m-1=m+n/p
CMRp^2=n+2
cau 2,cho a,b,c thoa man a+b+c=0 CMRab+bc+ca be hon hoac bang 0
cau 3,bay gio la 4 gio 10 phut hoi sau it nhat bao lau thi hai kim dong ho nam doi dien nhau tren mot duong thang
cau 4,so 2^100 viet trong he thap phan tao thanh 1 so hoi so do co bao nhieu chu so
cau 5,cho a,b,c la so do 3 canh cua mot tam giac vuong voi c la so do canh huyen CMRa^2n+b^2n be hon hoac bang c^2n (n la so tu nhien lon hon 0 )
cho cac so duong a,b,c thoa man : ab+a+b=3
tim GTNN cua bieu thuc C=a^2+b^2