Tìm điều kiện của số tự nhiên n (n > 0) để đơn thức B = 4 x 4 y 4 chia hết đơn thức C = x n - 1 y 4 là
A. n = 5
B. 0 < n ≤ 5
C. n ≥ 5
D. n = 0
bài 2 : a , tìm điều kiện của số n để biểu thức : A=4/n-1 la phan so
b, tìm số tự nhiên n để A cũng là số tự nhiên
Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24
Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24
Cho biểu thức A = 4/n - 3. a) Tìm điều kiện của n để A là phân số. b) Tìm phân số A biết n = 0; n = 10; n = -2
\(A=\dfrac{4}{n-3}\)
a) Để A là phân số :
\(n-3\ne0\Leftrightarrow n\ne3\)
b)
Với : n = 0 \(\Rightarrow A=\dfrac{4}{0-3}=-\dfrac{4}{3}\)
Với : n = 10 \(\Rightarrow A=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Với : n = -2 \(\Rightarrow A=\dfrac{4}{-2-3}=-\dfrac{4}{5}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là phân số thì \(n\notin\left\{-1;1;2;3;4;5;7\right\}\)
b)
+) n=0, ta có:;
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10, ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2, ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)
Chúc bạn học tốt!
tìm n thuộc N thỏa mãn 4 điều kiện
a, n là bình phương của một số tự nhiên
b, n có 4 chữ số
c, chữ só hàng nghìn và chữ số hàng đơn vị giống nhau
d, tích của 4 chữ số bằng 10
Số cần tìm là 1521.
Xét điều kiện b và c ta có số cần tìm có dạng abca.
Trong đó (điều kiện d): a.b.c.a = 10 mà 10 = 2.5 do đó abca = 1251 hoặc 1521.
Xét điều kiện a có 1521 là bình phương của 39.
Vậy số cần tìm là 1521.
Câu hỏi :
tìm n thuộc N thỏa mãn 4 điều kiện
a, n là bình phương của một số tự nhiên
b, n có 4 chữ số
c, chữ só hàng nghìn và chữ số hàng đơn vị giống nhau
d, tích của 4 chữ số bằng 10
Kết quả của mik giống bạn Trương Mĩ An .
1. Cho n là số tự nhiên có 2 chữ số. Tìm n biết n+4 và 2n đều là các số chính phương
2. Tìm x,y nguyên thỏa mãn điều kiện xy+2x+10y+19=0
1. Chứng minh rằng nếu các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) − 2y là số chính phương thì x = y.
2. Tìm các số nguyên dương n để n4 + 2n3 + 3n3 + 3n + 7 là số chính phương.
3. Tìm các số tự nhiên m,n thỏa mãn 2m + 3 = n2.
4. Tìm các số tự nhiên n để n2 + n + 2 là tích của k số nguyên dương liên tiếp với k ≥ 2.
5. Tìm các số tự nhiên n để 36n − 6 là tích của k số nguyên dương liên tiếp với k ≥ 2.
6. Tìm số tự nhiên n lớn nhất để 427 +4500 +4n là số chính phương.
7. Tìm các số nguyên tố p để 2p - 1 - 1 / p là số chính phương
Cho hai số tự nhiên m, n thỏa mãn điều kiện đa thức (3xn+2ym-3+ 1/2x6-ny5-m)chia hết cho đơn thức 8x4y. Khi đó m.n=....
cho biểu thức A=4/n-3:
a: Tìm điều kiện của n để a là phân số
b: Tìm phân số A để biết n=0; n= 10; n=-2
a, \(ĐK:n-3\ne0\Leftrightarrow n\ne3\)
b, Ta có : \(A=\dfrac{4}{n-3}\left(n\ne3\right)\)
n = 0 ( TMđk )
n = 10 ( TMđk )
n = -2 ( TMđk )
Thay n = 0 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}\)\(=\dfrac{4}{-3}=\dfrac{-4}{3}\)
Vậy giá trị của phân số A tại n=0 là \(\dfrac{-4}{3}\)
Thay n=10 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
Vậy giá trị của phân số A tại n=10 là \(\dfrac{4}{7}\)
Thay n=-2 vào phân số A, ta được :
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-7}=\dfrac{-4}{7}\)
Vậy giá trị của phân số A tại n=-2 là \(\dfrac{-4}{7}\)
Giải:
a) Để \(A=\dfrac{4}{n-3}\) là p/s thì n ∉ {-1;1;2;3;4;5;7}
b)
+) n=0; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{0-3}=\dfrac{4}{-3}=\dfrac{-4}{3}\)
+) n=10; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{10-3}=\dfrac{4}{7}\)
+) n=-2; ta có:
\(A=\dfrac{4}{n-3}=\dfrac{4}{-2-3}=\dfrac{4}{-5}=\dfrac{-4}{5}\)