Nếu cấp số cộng u n có công sai là d thì dãy số v n với v n = u n + 13 là một cấp số cộng có công sai là
A. d - 13
B. d + 13
C. d
D. 13d
Cho dãy số \(({u_n})\) với \({u_n} = 3n + 6\). Khẳng định nào sau đây là đúng?
A. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
B. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 6\).
C. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 3\).
D. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 6\).
Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
Chọn đáp án A.
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
a) \({u_n} = 3 + 5n;\)
b) \({u_n} = 6n - 4\);
c) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + n\);
d) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + 3\).
a) \({u_1} = 8;\;\;\;\;{u_2} = 13;\;\;\;\;\;{u_3} = 18;\;\;\;\;\;{u_4} = 23;\;\;\;\;\;{u_5} = 28\).
Ta có: \({u_n} - {u_{n - 1}} = 3 + 5n - \left[ {3 + 5\left( {n - 1} \right)} \right] = 5,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 8\) và công sai \(d = 5\).
Số hạng tổng quát: \({u_n} = 8 + 5\left( {n - 1} \right)\).
b) \({u_1} = 2;\;\;\;\;{u_2} = 8;\;\;\;\;{u_3} = 14;\;\;\;\;\;{u_4} = 20;\;\;\;\;\;{u_5} = 26\).
Ta có: \({u_n} - {u_{n - 1}} = 6n - 4 - \left[ {6\left( {n - 1} \right) - 4} \right] = 6,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 6\).
Số hạng tổng quát: \({u_n} = 2 + 6\left( {n - 1} \right)\).
c) \({u_1} = 2;\;\;\;\;{u_2} = 4;\;\;\;\;\;{u_3} = 7;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 16\)
Ta có: \({u_n} - {u_{n - 1}} = n,\;\) n biến động.
Suy ra đây không phải là cấp số cộng.
d) \({u_1} = 2;\;\;\;\;{u_2} = 5;\;\;\;\;\;\;{u_3} = 8;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 14\)
Ta có: \({u_n} - {u_{n - 1}} = 3\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 3\).
Số hạng tổng quát: \({u_n} = 2 + 3\left( {n - 1} \right),\;\forall n \ge 2\).
cho số N nguyên dương và dãy A gồm N phần tử kiểm tra xem dãy số vừa nhập có phải là một cấp số cộng hay không
VD: N= 4
Dãy A: 1 2 3 4 à là cấp số cộng với công sai d=1
Yêu cầu:
- xác định bài toán
- nêu ý tưởng
- mô tả thuật toán
Input: dãy A và N phần tử
Output: Là cấp số cộng hoặc không là cấp số cộng
Thuật toán:
- Bước 1: Nhập N và dãy A1,A2,...,An
- Bước 2: d←A2-A1; i←2;
-Bước 3: Nếu i>N thì in ra kết quả là cấp số cộng rồi kết thúc
- Bước 4: Nếu Ai+1-Ai khác d thì chuyền xuống bước 6
- Bước 5: i←i+1, quay lại bước 3
- Bước 6: Thông báo không phải là cấp số cộng rồi kết thúc
Cho cấp số cộng u 1 ; u 2 ; u 3 ; . . . ; u n có công sai d các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của d thì dãy số 1 u 1 + 1 u 2 + 1 u 3 + . . . + 1 u n là một cấp số cộng?
A. d=-1
B. d=0
C. d=1
D. d=2
Cho dãy số u n là một cấp số cộng có u 1 = 3 và công sai d=4. Biết tổng n số hạng đầu của dãy số u n là S n = 253 . Tìm n?
A. 10
B. 9
C. 12
D. 11
Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số cộng? Nếu là cấp số cộng, hãy tìm số hạng đầu \({u_1}\) và công sai d.
a) \({u_n} = 3 - 2n\)
b) \({u_n} = \frac{{3n + 7}}{5}\)
c) \({u_n} = {3^n}\)
a) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd = - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = - 2\end{array} \right.\end{array}\)
b) Dãy số trên là cấp số cộng
Ta có:
\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)
c) Dãy số đã cho không là cấp số cộng
Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)
Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*
Cho dãy số \(\left(u_n\right)\) là một cấp số cộng có \(u_1\) = 4, công sai d = -3 và \(u_n\) = -41. Tìm n?
Cho cấp số cộng \(u_1,u_2,u_3,...,u_n\) có công sai d, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của d thì dãy số \(\dfrac{1}{u_1};\dfrac{1}{u_2};\dfrac{1}{u_3};...;\dfrac{1}{u_n}\) là một cấp số cộng?
Cho n ∈ ℝ * dãy u n là một cấp số cộng với u 2 = 5 và công sai d = 3. Khi đó u 81 bằng
A. 239
B. 245
C. 242
D. 248
Đáp án C
u 81 = u 2 + 79 d = 5 + 79 . 3 = 242