Tính đạo hàm của hàm số y = sin lnx .
A. y ' = − cos lnx . 1 x
B. y ' = cos lnx . 1 x 2
C. y ' = cos lnx . 1 x
D. y ' = cos lnx . lnx
Tính đạo hàm của hàm số y = sin 2 x + cos 2 x 2 sin 2 x - cos 2 x
A.
B.
C.
D.
Tính đạo hàm của hàm số: y = sin x 1 + cos x 3
A. 3 sin 2 x 1 + cos x 3
B. 3 cos 2 x 1 + cos x 3
C. - 3 sin 2 x 1 + cos x 3
D. - 3 cos 2 x 1 + cos x 3
Tính đạo hàm của hàm số y = sin(cosx) + cos(sinx)
A: sin(2cosx)
B: cos(xsinx)
C: cos(2sinx)
D: -sin(x+cosx)
Chọn D.
Bước đầu tiên sử dụng đạo hàm tổng, sau đó sử dụng (sin u)’, (cos u)’.
y' = (sin(cosx))’ + (cos(sinx))’ = cos(cosx).(cosx)’ – sin(sinx).(sinx)’
= -sinx.cos(cosx) – cosx.sin(sinx) = -(sinx.cos(cosx) + cosx.sin(sinx))
= -sin(x + cosx).
Tính đạo hàm của hàm số y = 2.sin 3x + cos 2x
Bằng cách viết \(y = \cos x = \sin \left( {\frac{\pi }{2} - x} \right),\) tính đạo hàm của hàm số \(y = \cos x.\)
\(y'=\left(cosx\right)'\\ =\left(\dfrac{\pi}{2}-x\right)'cos\left(\dfrac{\pi}{2}-x\right)\\ =-cos\left(\dfrac{\pi}{2}-x\right)\\ =-sinx\)
Tính đạo hàm của hàm số sau y = sin x sin x - cos x
Tính đạo hàm của hàm số sau y = sin x sin x - cos x
Cho hàm số y = x [ cos ( ln x ) + sin ( ln x ) ] . Khẳng định nào sau đây đúng
Tính đạo hàm của các hàm số sau:
a) \(y = x{\sin ^2}x;\)
b) \(y = {\cos ^2}x + \sin 2x;\)
c) \(y = \sin 3x - 3\sin x;\)
d) \(y = \tan x + \cot x.\)
tham khảo:
a)\(y'=xsin2x+sin^2x\)
\(y'=sin^2x+xsin2x\)
b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)
c)\(y=sin3x-3sinx\)
\(y'=3cos3x-3cosx\)
d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)
\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)
Tìm đạo hàm y' của hàm số y = sin x + cos x
A. y' = 2cosx
B. y' = 2sinx
C. y' = sinx - cosx
D. y' = cosx - sinx