Những câu hỏi liên quan
PB
Xem chi tiết
CT
26 tháng 9 2018 lúc 15:49

Bình luận (0)
DP
Xem chi tiết
NP
Xem chi tiết
LU
Xem chi tiết
DK
Xem chi tiết
KC
Xem chi tiết
LH
24 tháng 9 2021 lúc 19:39

\(y=ax^2+bx+c\left(d\right)\)

Do y có gtln là 5 khi x=-2 

\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)

Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)

Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)

Vậy...

Bình luận (0)
DH
Xem chi tiết
NM
25 tháng 11 2021 lúc 10:50

\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=4\\4a-2b+c=4\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\2a-b=2\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=0\\c=0\end{matrix}\right.\\ \Leftrightarrow y=x^2\)

Bình luận (0)
NP
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
HN
11 tháng 11 2016 lúc 19:19

Đặt (P) : y = ax2

(P') : y = ax2+bx+c

Ta có : (P') : \(y=ax^2+bx+c=a\left(x^2+\frac{2.x.b}{2a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}\right)+c\)

\(=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\)

Đặt \(p=\frac{b}{2a}\) , \(q=-\frac{b^2-4ac}{4a}\) thì khi đó

\(\left(P'\right):y=a\left(x+p\right)^2+q\)

Điều này có nghĩa là ta tịnh tiến (P) sang phải p đơn vị , tịnh tiến lên trên q đơn vị thì được (P') => (P') thực chất là "phép tịnh tiến" của (P)

Từ đó bạn rút ra được điều phải chứng minh nhé!

Cách chứng minh trong SGK có viết rất rõ rồi , bạn tham khảo nhé !

 

Bình luận (1)