Tìm N là số tự nhiên sao cho 2n là bội của n-1
Tìm số tự nhiên n, sao cho:
a) 2n+3 là bội của n-2
b)2n+29 là bội của 2n+1
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
bạn Nguyễn Thị Bích Phương làm đúng đó
2n+3 là bội của n-2
2n+3 chia hết cho n-2
2n-4+7 chia hết cho n-2
n-2 thuộc Ư(7)
n-2 = 1,7
n = 2,8
Tìm số tự nhiên n sao cho 2n+7 là bội của n+1
em lớp 5 nhưng biết câu này . Đáp án là 4
vì ( 2n + 7 ) chia hết cho ( n + 1 ) = > 2n + 7 -2 (n +1 ) chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 là ước của 5
với n + 1 = 1 => n = 0
với n + 1 = 5 => n = 4
đáp số : n = 0 ; n = 4
Tìm số tự nhiên n sao cho 3n+5 là bội của 2n-1
Ta có :
3n+5 là bội của 2n-1
\(\Rightarrow\)3n+5\(⋮\)2n+1
\(\Rightarrow\)2(3n+5)\(⋮\)2n+1
\(\Rightarrow\)6n+10\(⋮\)2n+1
\(\Rightarrow\)6n+3-13\(⋮\)2n+1
\(\Rightarrow\)3(2n+1)-13\(⋮\)2n+1
Vì 3(2n+1)\(⋮\)2n+1
\(\Rightarrow\)13\(⋮\)2n+1
\(\Rightarrow\)2n+1\(\in\)Ư(13)
2n-1 | n |
1 | -1 |
-1 | 0 |
13 | 7 |
-13 | -6 |
Vậy n\(\in\){1; 0; 7; -6)
Bài 1 tìm các số tự nhiên x sao cho 2n + 29 là bội của 2n + 29
Bài 2 tìm số tư nhiên x sao cho x + 15 là bôi của 2n + 1
Bai 3 tìm x thuộc n sao cho 2x + 3 là bội của x - 3
Bai 4 tìm các số tự nhiên x , y sao cho
a [ a + 1 ]. [ y - 2] = 3
b [ x - 1 ] . [ y + 2] = 2
Tìm số tự nhiên n sao cho :
a) 3n + 13 là bội của n-2
b) n+1 là ước của n2 + 4n + 7
c) 3n + 5 là bội của 2n-1
Tìm số tự nhiên n sao cho (6n+85) là bội của 2n+5
tìm số tự nhiên n :
a, 6 là bội của n + 1
b, n + 1 là bội của 6
c, 2n + 3 là bội của n + 1
d, 2n + 3 là bội của n + 1
a) 6 là bội của n+1
=> 6 ⋮ n+1
=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}
Lập bảng tìm n :
n+1 | 1 | 2 | 3 | -1 | -2 | -3 |
n | 0 | 1 | 2 | -2 | -3 | -4 |
Vậy n thuộc { 0;1;2;-2;-3;-4}
b) Xét n+1 là bội của 6
=> n+1 thuộc { 0; 6; 12; 18; ... }
=> n thuộc { -1; 5; 11; 17; .... }
Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^
c) 2n+3 là bội của n+1
=> 2n+3 ⋮ n+1
=> 2(n+1) + 1 ⋮ n+1
ta có 2(n+1) ⋮ n+1
=> 1 ⋮ n+1
=> n+1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 0; -2 }
d) tương tự
a) 6 là bội của n+1 => n+1 là ước của 6
Ư(6)= 1;2;3;6. Ta có bảng: ( bạn tự vẽ bảng nhé )
n+1 1 2 3 6
n 0 1 2 5
Vậy n = 0; 1; 2; 5
b) B(6)= 0;6;12;18;24;30;...... Ta có bảng:
n+1 0 12 18 24 30
n 0 11 17 23 29
Vậy n = 0;5;11;17;23;29;.....
c) ta có bảng:
n 0 1 2 3 4 5 6 7
2n+3 3 5 7 9 11 13 15 17
n+1 1 2 3 4 5 6 7 8
Vậy n = 0.
Chứng minh rằng nếu n là số tự nhiên sao cho n +1 và 2n +1 đều là số chính phương thì n là bội của 24
Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)
Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)
Từ (1),(2)(1),(2) có n⋮24n⋮24.
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là số chính phương thì n là bội của 24 .