Những câu hỏi liên quan
NA
Xem chi tiết
LL
Xem chi tiết
NP
17 tháng 12 2014 lúc 14:30

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

Bình luận (0)
NT
10 tháng 6 2015 lúc 11:12

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

Bình luận (1)
cc
17 tháng 7 2016 lúc 8:56

 Nguyễn Minh Trí giải kiểu j thế ?

Bình luận (0)
NL
Xem chi tiết
NL
7 tháng 4 2023 lúc 22:03

     

Bình luận (0)
H24
Xem chi tiết
FZ
20 tháng 10 2015 lúc 19:38

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
=> n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà 2; 4; 8 không chia hết cho 5. 

=> n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.

Bình luận (0)
RM
Xem chi tiết
HP
22 tháng 9 2018 lúc 13:40

Đặt A = n(n^4-16).
Ta có: n(n^4-16) = n(n^2-4)(n^2+4) = n(n-2)(n+2)(n^2+4)
Để chứng minh A chia hết cho 15, ta sẽ chứng minh A chia hết cho cả 3 và 5.
a. Chứng minh A chia hết cho 3:
- Nếu n = 3k, dĩ nhiên A chia hết cho 3.
- Nếu n = 3k+1, => n+2 = 3k+3 chia hết cho 3 => A chia hết cho 3.
- Nếu n = 3k+2, => n-2 = 3k chia hết cho 3 => A chia hết cho 3.
b. Chứng minh A chia hết cho 5:
- Nếu n=5k dĩ nhiên A chia hết cho 5.
- Nếu n = 5k+1, => n^2+4 = ((5k+1)^2+4) = 25k^2+10k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+2, => n-2 = 5k chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+3, => n+2 = 5k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+4, => n^2+4 = ((5k+4)^2+4) = 25k^2+40k+20 chia hết cho 5 => A chia hết cho 5.
Trong mọi trường hợp,A chia hết cho cả 3 và 5, mà 2 số này nguyên tố cùng nhau => A chia hết cho 15

Bình luận (0)
MC
Xem chi tiết
XO
10 tháng 2 2020 lúc 8:54

Ta có\(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)=\frac{1}{15}-\frac{3}{25n+20}\)(1)

kết hợp điều kiện ta có \(\frac{3}{25n+20}\ge\frac{3}{25.2+20}=\frac{3}{70}>0\)

=> \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
PL
Xem chi tiết
NB
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 2 2017 lúc 9:30

Bình luận (0)