Hãy liệt kê tất cả các số gồm ba chữ số khác nhau từ các chữ số 1, 2, 3.
Từ các số 2,0,4,5 ta có thể lập được tất cả bao nhiêu số có 4 chữ số khác nhau và hãy liệt kê các số đó từ bé đến lớn
a, Số có 4 chữ số có dạng: \(\overline{abcd}\)
a có 3 cách chọn
b có 3 cách chọn
c 2 cách chọn
d có 1 cách chọn
Số các số có 4 chữ số khác nhau được lập từ các chữ số đã cho là:
3 \(\times\) 3 \(\times\) 2 \(\times\) 1 = 18 ( số)
b, 18 số có 4 chữ số khác nhau được lập từ các số đã cho, đó là các số:
2045; 2054; 2405; 2450; 2504; 2540
4025; 4052; 4205; 4250; 4502; 4520
5024; 5042; 5204; 5240; 5402; 5420
Từ ba chữ số 1; 3; 9, hãy viết tất cả các số tự nhiên có ba chữ số mà các chữ số đó khác nhau
Từ ba chữ số 1; 3; 9, hãy viết tất cả các số tự nhiên có ba chữ số mà các chữ số đó khác nhau
Từ ba chữ số 1; 3; 9 ta viết được 6 số có ba chữ số khác nhau là: 139; 193; 319; 391; 913; 931
Cho các chữ số 8;2;5. Hãy tính tổng của tất cả các số có 3 chữ số khác nhau lập được từ 3 chữ số đã cho. Tổng của tất cả các số có 3 chữ số khác nhau viết được từ ba số đã cho là bao nhiêu?
Tất cả các số có 3 chữ số khác nhau là : 258, 285, 528, 582, 825, 852.
Tổng của các số đó là :
258 + 285 + 528 + 582 + 825 + 825 = 3330
( Sai thì cho tui sorry nhoa ? )
Từ 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7, lập tất cả các số tự nhiên gồm 5 chữ số khác nhau. Hãy tính tổng tất cả các số tự nhiên được tạo thành.
Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}
Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.
Có 8 cách chọn chữ số a lấy từ tập S.
Có 7 cách chọn chữ số b lấy từ tập S và khác a.
Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.
Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.
Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.
Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.
Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số abcde mở rộng là:
840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)
Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.
Có 7 cách chọn chữ số b lấy từ tập T.
Có 6 cách chọn chữ số c lấy từ tập T và khác b.
Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.
Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.
Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.
Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)
Từ (1) và (2) suy ra tổng các số abcde cần tìm là:
261330720 – 3732960 = 257597760
10234,10235,10236,10237,10324,10235,10236,10237,10423,..
Từ 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7, lập tất cả các số tự nhiên gồm 5 chữ số khác nhau. Hãy tính tổng tất cả các số tự nhiên được tạo thành.
Từ 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7, lập tất cả các số tự nhiên gồm 5 chữ số khác nhau. Hãy tính tổng tất cả các số tự nhiên được tạo thành.
Dịch đề: Từ 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7, lập tất cả các số tự nhiên gồm 5 chữ số khác nhau. Hãy tính tổng tất cả các số tự nhiên được tạo thành
Đáp số
5880 số
2015979840 số đc tạo thành
Giải thích các bước giải:
Gọi số tự nhiên đc tạo từ 5 số trên là abcde(a≠0)
Có 8 cách chọn số a
Có 7 cách chọn số b
Có 6 cách chọn số c
Có 5 cách chọn số d
Có 4 cách chọn số e
Vậy thao quy tăc nhân ta có : 8.7.6.5.4=5880 số
Gọi S( 8) là tông các số đc lập từ A
Mỗi chữ số trong 1 số cs 5 chữ số đc lap lại 7! lần
khi đó S(8)=7!(1+2+3+4+5+6+7+8)(10^4+10^3+10^2+10+1)=2015979840
Từ 8 chữ số 0, 1, 2, 3, 4, 5, 6, 7, lập tất cả các số tự nhiên gồm 5 chữ số khác nhau. Hãy tính tổng tất cả các số tự nhiên được tạo thành.