Phân tích đa thức sau thành nhân tử: 4x2y2 – (x2 + y2)2
Phân tích đa thức thành nhân tử:
a) 3x-3y-x2+2xy-y2
b) x2-4x2y2+y2+2xy
c) (x+y)3-(x-y)3
d) x2-5x-14
b) =(x+y)^2 - (2xy)^2
= (x+y-2xy)(x+y+2xy)
\(a,=3\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(3-x+y\right)\\ b,=\left(x+y\right)^2-4x^2y^2=\left(x-2xy+y\right)\left(x+2xy+y\right)\\ c,=\left(x+y-x+y\right)\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\\ =2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\\ =2y\left(3x^2+y^2\right)\\ d,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)
Phân tích các đa thức sau thành nhân tử:
4x2y2 - ( x2 + y2 - a2)2
x3 - 1 + 5x2 - 5 +3x - 3
( x - y)2 + 4(x-y) + 4
x2 -2x( 3x+1) + (3x+1)2
x4 + 2x2(2x+1) + ( 2x+1)2
\(\left(x-y\right)^2+4\left(x-y\right)+4\)
\(=\left(x-y\right)^2+2.\left(x-y\right).2+2^2\)
\(=\left(x-y+2\right)^2\)
hk tốt
^^
phân tích đa thức thành nhân tử
a, 4x2-25-(2x-5) (2x+7)
b, x3 +27 +(x +3) (x-9)
c, 4x2y2 -(x2 + y2- z2)
\(a,4x^2-25-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
\(b,x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
=.= hok tốt!!
Phân tích các đa thức sau thành nhân tử
a) x 2 − 2 x + x − 2
b) x 2 + 2 x y + y 2 − 9
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
Phân tích đa thức sau thành nhân tử 3 x – 3 y + x 2 – y 2
3 x – 3 y + x 2 – y 2 = ( x – y ) ( 3 + x + y )
Phân tích đa thức sau thành nhân tử: x2 + 4x –y2 + 4
Nhận thấy x2 + 4x + 4 là hằng đẳng thức nên ta nhóm với nhau.
x2 + 4x – y2 + 4
= (x2 + 4x + 4) – y2
= (x + 2)2 – y2 (Xuất hiện hằng đẳng thức (3))
= (x + 2 – y)(x + 2 + y)
Phân tích đa thức sau thành nhân tử: 2xy – x2 – y2 + 16
2xy – x2 – y2 + 16 (Có 2xy ; x2 ; y2, ta liên tưởng đến HĐT (1) hoặc (2))
= 16 – (x2 – 2xy + y2)
= 42 – (x – y)2 (xuất hiện hằng đẳng thức (3))
= [4 – (x – y)][4 + (x - y)]
= (4 – x + y)(4 + x – y).
Phân tích đa thức sau thành nhân tử: x . x – y + x 2 – y 2
x . x – y + x 2 – y 2
= x x − y + x − y x + y = 2 x + y x − y