Tìm 2 số nguyên x, y biết x,y cùng dấu và |x+y|=3
b |x+2010|=2011
a) Tìm 3 số nguyên dương biết tổng của chúng bằng nửa tích của chúng
b) tìm các số tự nhiên x,y soa cho ƯCLN (x,y) = 1 và\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
c) So sánh A =\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\) và B =\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+......+\frac{1}{17}\)
mik fan Phong ca nè bạn
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha
a,b,c,d Khác 0. Tính x = x^2011+y^2011+t^2011
Biết x,y,t,z thoả x^2010+y^2010+z^2010+t^2010/ a^2+b^2+c^2+d^2= x^2010/a^2 = y^2010/b^2= z^2010/c^2= t^2010/d^2
a) Cho các số a,b,c,d khác 0. Tính T = x2011 + y2011 + z2011 + t2011
Biết x, y, z, t thoả mãn: \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Ta có
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
\(=>\frac{x^{2010}}{a^2+b^2+c^2+d^2}+\frac{y^{2010}}{a^2+b^2+c^2+d^2}+\frac{z^{2010}}{a^2+b^2+c^2+d^2}+\frac{t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
\(=>\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)
\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+z^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)
\(Do\left\{\begin{matrix}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\end{matrix}\right.\)
\(=>\left\{\begin{matrix}x^{2010}=0\\y^{2010}=0\\z^{2010}=0\\t^{2010}=0\end{matrix}\right.\)
\(=>\left\{\begin{matrix}x=0\\y=0\\z=0\\t=0\end{matrix}\right.\)
Ta có
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
\(=>T=0^{2011}+0^{2011}+0^{2011}+0^{2011}\\ T=0+0+0+0\\ T=0\)
(x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
Cho các số a,b,c,d khác 0 .Tính
T=\(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn :\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho các số a,b,c,d khác 0. Tính :
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn : \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
cho a,b,c,d # 0 và : (x^2011+y^2011+z^2011+t^2011)/a^2+b^2+c^2+d^2 = (x^2010)/a^2 + ( y^2010)/b^2 + (z^2010)/c^2 + (t^2010)/d^2. Tính T= x^2011 + y^2011 + z^2011 + t^2011
cho x,y là 2 số dương và x^2010+y^2010=x^2011+y^2011=x^2012+y^2012n tính giá trị A = x^2020+y^2020
Bài ni t mần cho phát chán nó rồi:))
Ta có:\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(a+b\right)-ab\left(a^{2010}+b^{2010}\right)\left(1\right)\)
Mặt khác:\(x^{100}+y^{100}=x^{101}+y^{101}=x^{102}+y^{102}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow1=x+y-xy\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow x^{2010}+1=x^{2011}+1=x^{2012}+1\Rightarrow x=1\end{cases}}\)vì \(x;y\) là các số dương
Thay vào ta được:\(A=1^{2020}+1^{2020}=2\)
Làm lại nha.sơ suất quá:((
Ta có:
\(x^{2012}+y^{2012}=\left(x^{2011}+y^{2011}\right)\left(x+y\right)-xy\left(x^{2010}+y^{201}\right)\left(1\right)\)
Mặt khác:\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\left(2\right)\)
Từ (1);(2) suy ra:
\(x^{2010}+y^{2010}=\left(x^{2010}+y^{2010}\right)\left(x+y\right)-xy\left(x^{2010}+y^{2010}\right)\)
\(=\left(x^{2010}+y^{2010}\right)\left(x+y-xy\right)\)
\(\Rightarrow x+y-xy=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow1+y^{2010}=1+y^{2011}=1+y^{2012}\Rightarrow y=1\\y=1\Rightarrow1+x^{2010}=1+x^{2011}=1+x^{2012}\Rightarrow x=1\end{cases}}\)
Thay vào ta được \(A=3\)
Vậy A=3