1) Cho A=8.n + 111...1(n chữ số 1)(n thuộc STN khác o)
Chứng minh rằng:A chia hết cho 9
Chứng minh rằng :
a)với mọi n thuộc N thì A=8*n+11..11 chia hết cho 9 (11...111 có n chữ số 1 )
b)Với mọi a,b,n thuộc N thì B=(10n-1)*a+(11..111-n)*b chia hết cho 9 (111..111 có n chữ số 1)
c)888...88-9=n chia hết cho 9 (888..888 có n chữ số 8)
1/Chứng minh rằng với e thuộc N , thì các số sau chia hết cho 9 :
a/10n-1
b/10n+8
2/Tìm điều kiện của n thuộc N để số 10n-1 chia hết cho 9 và 11
3/Cho A = 8n + 1111...111 (n thuộc N*)
1111.....111 có n chữ số 1
Chứng minh rằng A chia hết cho 9
\(1.a,10^n-1=100..0-1\)(n chữ số 0)=999..99(n chữ số 9)chia hết cho (vì có tổng bằng 9+9+..+9 chia hết cho 9)
\(b,10^n+8=100..0+8\)(n chữ số 0) = 1000...08.
Tổng các chữ số là: 1+0+0+...+8=9 chia hết cho 9.
2.
Tạm thời mik chỉ bik lm bài 1 nên pn thông cảm nhé
1 a) pn thao khảo tại nhé do ở đây có bài giống nên mik gửi link luôn nhé! http://olm.vn/hoi-dap/question/651590.html
b) Ta có: 10n+8= 1000000000000.......000+8
n chữ số 0
=> 10n+8= 10000000000........008
n chữ số 8
Ta có tổng các chữ số của 10n+8 bằng: 1+00000000.....000 ( Với n chữ số 0)+8= 1+0+8=9
Vì 9 chia hết cho 9 => 10n+8 chia hết cho 9
ta có : \(^{10^n}\) = 999...9 ( có n số 9 ) vì 9999...9 chia hết cho 9
suy ra 10^n - 1 chia hết cho 9
Cho A=8^n+111...11(n chữ số 1) ,(n là số tự nhiên khác 0). Chứng minh rằng A chia hết cho 9
Cho n thuộc N, chứng minh rằng:
A= 17n+111...111 ( n chữ số 1 ) chia hết cho 9
cho a= 8n+1111...111(n thuộc n* ; n chữ số 1). chứng minh a chia hết cho 9 ?
Ta thấy: 11...1 ( n chữ số 1) có tổng = n nên:
8n +n = n x ( 8+1 ) = n x 9 chia hết cho 9
Vậy A chia hết cho 9
cho n thuộc N chứng minh rằng : A=17n+111...1(n chữ số 1) chia hết cho 9
A=9n.(111...1+8n)(n chữ số 1) chia hết cho 9
câu1: cho A= 8. n + 111...1(có n số tự nhiên 1, n thuộc số tự nhiên khác 0). Chứng minh: A chia hết cho 9
Câu 2: tìm n thuộc số tự nhiên khác 0:
a) 2+ 4 + 6 +....+2n = 210
b) 1 + 3+ 5 +... + ( 2n - 1) = 225
Cho A = 8n + 111.......1 [ n chữ số 1 ] (n thuộc N2 )
Chứng minh rằng A chia hết cho 9
bài 1: cho biết các số tự nhiên a và 6a có tổng các chữ số giống nhau.. chứng minh rằng a chia hết cho 9
bài 2: chứng minh rằng với mọi số tự nhiên n ta có:
a) n. ( n+2) . (n+7) chia hết cho 3
b) 5^n -1 chia hết cho 4
c)n^2+n.5 không chia hết cho 7
bài 3:chứng minh rằng số 111....111 +8n chia hết cho 9( số 111...111 có n chữ số 1)