Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Bình luận (0)
PS
23 tháng 8 2019 lúc 21:49

chuẩn

Bình luận (0)
TP
Xem chi tiết
NT
13 tháng 10 2015 lúc 22:58

Giả sử 2≤b≤a<c có a(a+1)=c(c+1)−b(b+1)=(c−b)(c+b+1)      (1)

Do a+1<c+b+1 từ (1)⇒c−b<a⇒c<a+b⇒c+b+1<a+2b+1⇒c+b+1<3a+1

c>a⇒c+b+1=2a hoặc c+b+1=3a

Vì a,b,c là các số nguyên tố , c>a⇒c lẻ ta có 2 trường hợp

TH1: c+b+1=2a; Do c+1 và 2a là số chẵn thì b là số nguyên tố chẵn nên b chẵn nên b=2

  Từ đó tìm ra 3a=11 (loại)

TH2: c+b+1=3a thay vào (1) có a+1=3(c−b) mà c=3a−b−1⇒a+1=3(3a−2b−1)⇒3b=4a−2⇒b chẵn ⇒b=2⇒a=2⇒c=3

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết