Tìm tất cả các giá trị thực của tham số m sao cho phương trình x 2 + m x + 2 = 2 x + 1 có hai nghiệm thực?
A. m ≤ 3
B. m ≤ 5
C. m>1
D. đáp án khác
Tìm tất cả các giá trị thực của tham số m sao cho phương trình 2 x + 1 = x + m có nghiệm thực?
A. m ≥ 2
B. m ≤ 2
C. m ≥ 3
D. m ≤ 3
Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình: - x 3 + 3 m x - 2 < - 1 x 3 nghiệm đúng ∀ x ≥ 1 ?
A. m < 2 3 .
B. m ≤ 2 3 .
C. m ≥ 3 2 .
D. - 1 3 ≤ m ≤ 3 2 .
Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình m . 4 x + ( m - 1 ) 2 x + 2 + m - 1 > 0 nghiệm đúng ∀ x ∈ ℝ ?
A. m ≤ 3 .
B. m ≥ 1 .
C. - 1 ≤ m ≤ 4 .
D. m ≥ 0 .
Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình 3 ( 1 + x + 3 - x ) - 2 ( 1 + x ) ( 3 - x ) ≥ m nghiệm đúng với mọi x ≤ - 1 ; 3 ?
A. m ≤ 6 .
B. m ≥ 6 .
C. m ≥ 6 2 - 4 .
D. m ≤ 6 2 - 4 .
Cho phương trình log 2 x = m với x > 0. Tìm tất cả các giá trị thực của tham số m để phương trình có nghiệm thực.
A. m ≥ 0
B. m ∈ ℝ
C. m > 0
D. m ∈ ℤ
Đáp án là B
Tập giá trị của hàm số log a x = R
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x 2 - 3 x + 2 ≤ 0 cũng là nghiệm của bất phương trình m x 2 + ( m + 1 ) x + m + 1 ≥ 0 ?
A. m ≤ - 1 .
B. m ≤ - 4 7 .
C. m ≥ - 4 7 .
D. m ≥ - 1 .
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x2-3x+2 ≤ 0 cũng là nghiệm của bất phương trình mx2+(m+1) x+m+1 ≥ 0
A. m ≤ - 1
B. m ≤ - 4 7
C. m ≥ - 4 7
D. m ≥ - 1
Bất phương trình x2-3x+2 ≤ 0 ⇔ 1 ≤ x ≤ 2
Bất phương trình mx2+(m+1) x+m+1 ≥ 0
Xét hàm số f ( x ) = - x - 2 x 2 + x + 1 , 1 ≤ x ≤ 2
Có f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 ∀ x ∈ 1 ; 2
Yêu cầu bài toán ⇔ m ≥ m a x [ 1 ; 2 ] f ( x ) ⇔ m ≥ - 4 7
Chọn C.
Tìm tất cả các giá trị thực của tham số m sao cho mọi nghiệm của bất phương trình: x2- 3x+ 2≤ 0 cũng là nghiệm của bất phương trình mx2+ (m+ 1) x+ m+1≥0?
A. m< -1
B. m ≤ - 4 7 .
C. m ≥ - 4 7 .
D. m> -1
Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.
Bất phương trình mx2+ (m+ 1) x+ m+1≥0
⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1
Xét hàm số f ( x ) = - x - 2 x 2 + x + 1 với 1≤ x≤ 2
Có đạo hàm f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2
Yêu cầu bài toán ⇔ m ≥ m a x [ 1 ; 2 ] f ( x ) ⇔ m ≥ - 4 7
Chọn C.
Cho phương trình log 2 m = m với x > 0. Tìm tất cả các giá trị thực của tham số m để phương trình có nghiệm thực
A. m ≥ 0
B. m ∈ R
C. m > 0
D. < 0
Lời giải:
Để pt có 2 nghiệm pb thì: $\Delta'=4-(3-m)>0$
$\Leftrightarrow m+1>0\Leftrightarrow m>-1(*)$
Khi đó, áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=4$
$x_1x_2=3-m$
Để $0\leq x_1< x_2<3$ thì:
\(x_2,x_1\geq 0\Leftrightarrow \left\{\begin{matrix}\ x_1x_2=3-m\geq 0\\ x_1+x_2=4\geq 0\end{matrix}\right.\Leftrightarrow m\leq 3(**)\)
\(x_2,x_2<3\Leftrightarrow \left\{\begin{matrix} x_1+x_2<6\\ (x_1-3)(x_2-3)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4<6\\ x_1x_2-3(x_1+x_2)+9>0\end{matrix}\right.\)
\(\Leftrightarrow 3-m-12+9>0\Leftrightarrow m<0(***)\)
Từ $(*); (**); (***)\Rightarrow -1< m< 0$