Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LD
30 tháng 4 2016 lúc 18:39

=> 4.S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 => 4.S - S = 1 + 4 2 + 4 3 + 4 4 + ... + 4 2014 − 4 1 + 4 2 + 4 3 + ... + 4 2014 => 3.S = = 1 + 4 2 − 4 1 + 4 3 − 4 2 + 4 4 − 4 3 + ... + 4 2014 − 4 2013 − 4 2014 => 3.S = 1 + 4 1 + 4 1 + ... + 4 1 − 4 2014 Tính A= 1 + 4 1 + 4 1 + ... + 4 1 => 4.A = 4 + 1 + 4 1 + 4 1 + ... + 4 1 => 4.A - A = 4 − 4 1 => A= 3 4 − 3.4 1 4 1 2014 4 1 2014 4  Trả lời 3  Đánh dấu Cho tổng gồm 2014 số hạng: S= 1/4 + 2/4 2 + 3/4 3 + 4/4 4 + ... + 2014/4 2014 Chứng mih rằng: S < 1 2 3 2013 ( 2 3 2013 ) ( 2 3 2014 ) ( ) ( 2 2 ) ( 3 3 ) ( 2013 2013 ) 2014 2 2013 2014 2 2013

Bình luận (0)
H24
30 tháng 4 2016 lúc 18:48

bạn có thể trình bày theo dòng không

Bình luận (0)
NP
Xem chi tiết
BB
2 tháng 7 2017 lúc 20:24

Giữa hai số chẵn có 4 số lẻ, vậy hiệu của 2 số chẵn này là 4 x 2 = 8

Số bé là:(2014 - 8) : 2 =1003

Số lớn là:1003 + 8 = 1011

Vậy không thỏa mãn yêu cầu của đề bài (vì 2 số đều là lẻ)

=>2 số đó là 1003 và 1011

chọn đúng cho mình nha đúng 100% luôn

~Chúc bạn học giỏi~

Bình luận (0)
HA
2 tháng 7 2017 lúc 20:24

Số đó là : 1002 và 1012

Bình luận (0)
NH
2 tháng 7 2017 lúc 20:31

Giữa hai số chẵn có 4 số lẻ, vậy hiệu của 2 số chẵn này là

4 x 2 = 8

Số bé là:

(2014 - 8) : 2 =1003

Số lớn là:

1003 + 8 = 1011

Vậy không thỏa mãn yêu cầu của đề bài (vì 2 số đều là lẻ)

=>2 số đó là 1003 và 1011

Bình luận (0)
LK
Xem chi tiết
HP
10 tháng 5 2016 lúc 8:57

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)

\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)

Bình luận (0)
IN
10 tháng 5 2016 lúc 9:29

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)

\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)

\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

Bình luận (0)
BL
Xem chi tiết
ST
1 tháng 5 2017 lúc 21:57

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)

\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)

\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)

\(9S=4-\frac{2010}{4^{2014}}< 4\)

\(\Rightarrow9S< 4\)

\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)

Bình luận (0)
TD
1 tháng 5 2017 lúc 21:48

Ta có :

\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )

\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )

Lấy ( 2 ) - ( 1 ) ta được :

\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

gọi     \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )

\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\)  ( 4 )

Lấy ( 4 ) - ( 3 ) ta được :

\(3B=4-\frac{1}{4^{2013}}\)

\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)

\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)

\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)

vậy \(S< 1\)

Bình luận (0)
NY
Xem chi tiết
AH
24 tháng 4 2022 lúc 18:56

4S=1+24+342+....+2014420134S=1+24+342+....+201442013

4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)4S−S=3S=1+24+342+....+201442013−(14+242+343+....+201442014)

3S=1+(24−14)+(342−242)+......+(201442013−201342013)−2014420143S=1+(24−14)+(342−242)+......+(201442013−201342013)−201442014

3S=1+14+142+143+.....+142013−2014420143S=1+14+142+143+.....+142013−201442014

đặt A=1+14+142+143+....+142023A=1+14+142+143+....+142023

4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)4A−A=4+1+14+142+.....+142022−(1+14+142+....+142023)

3A=4−1420233A=4−142023

A=43−13.42023A=43−13.42023

⇒3S=43−13.42023−201442024⇒3S=43−13.42023−201442024

⇒S=49−19.42023−20143.42024⇒S=49−19.42023−20143.42024

do 49<48=1249<48=12

⇒S=49−19.42023−20143.42024<48=12(đpcm)

Bình luận (0)
NM
Xem chi tiết
TL
25 tháng 4 2015 lúc 21:52

=>  \(4.S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)

=> 4.S - S = \(\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\right)\)

=> 3.S = \(=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+\left(\frac{4}{4^3}-\frac{3}{4^3}\right)+...+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)

=> 3.S =  \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)

Tính A= \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> \(4.A=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 4.A - A = \(4-\frac{1}{4^{2013}}\)=> A= \(\frac{4}{3}-\frac{1}{3.4^{2013}}\)

=> 3.S = \(\frac{4}{3}-\frac{1}{3.4^{2013}}-\frac{2014}{4^{2014}}\) => S = \(\frac{4}{9}-\frac{1}{9.4^{2013}}-\frac{2014}{4^{2014}}

Bình luận (0)
TL
25 tháng 4 2015 lúc 22:20

Nếu là 1/2 thì ta so sánh 4/9 < 4/8 = 1/2 => S < 1/2

Bình luận (0)
LT
13 tháng 8 2017 lúc 16:05

Sao an loan luc lam S luc lam A vay? Do hoi chang?

Bình luận (0)