Giá trị của biểu thức M = sin² 10°+ sin² 20° + sin² 70° + sin² 80° – 3.tan 39°.tan 51° là
Tính giá trị của biểu thức
A=sin^2 70°+sin^2 80°+sin^2 10°+sin^2 20°
A=sin^2 70°+sin^2 80°+sin^2 10°+sin^2 20°
\(=\sin^270^o+sin^280^o+sin^210^o+sin^220^o.\)
Nhập zô máy tính như sau:
\(=Sin\left(70\right)^2+Sin\left(80\right)^2+Sin\left(10\right)^2+Sin\left(20\right)^2\)
\(=2\)
Nếu bn ko đc dùng máy tính thì dùng bảng cx đc nha
Không dùng máy tính cầm tay, hãy tính giá trị của các biểu thức sau:
\(A = {(\sin {20^o} + \sin {70^o})^2} + {(\cos {20^o} + \cos {110^o})^2}\)
\(B = \tan {20^o} + \cot {20^o} + \tan {110^o} + \cot {110^o}.\)
Ta có: \(\sin {70^o} = \cos {20^o};\;\cos {110^o} = - \cos {70^o} = - \sin {20^o}\)
\(\begin{array}{l} \Rightarrow A = {(\sin {20^o} + \cos {20^o})^2} + {(\cos {20^o} - \sin {20^o})^2}\\ = ({\sin ^2}{20^o} + {\cos ^2}{20^o} + 2\sin {20^o}\cos {20^o}) + ({\cos ^2}{20^o} + {\sin ^2}{20^o} - 2\sin {20^o}\cos {20^o})\\ = 2({\sin ^2}{20^o} + {\cos ^2}{20^o})\\ = 2\end{array}\)
Ta có: \(\tan {110^o} = - \tan {70^o} = - \cot {20^o};\;\cot {110^o} = - \cot {70^o} = - \tan {20^o}.\)
\( \Rightarrow B = \tan {20^o} + \cot {20^o} + ( - \cot {20^o}) + ( - \tan {20^o}) = 0\)
Tính giá trị các biểu thức sau:
a) $A=\sin ^{2} 3^{\circ}+\sin ^{2} 15^{\circ}+\sin ^{2} 75^{\circ}+\sin ^{2} 87^{\circ}$.
b) $B=\cos 0^{\circ}+\cos 20^{\circ}+\cos 40^{\circ}+\ldots+\cos 160^{\circ}+\cos 180^{\circ}$.
c) $C=\tan 5^{\circ} \tan 10^{\circ} \tan 15^{\circ} \ldots \tan 80^{\circ} \tan 85^{\circ}$.
a) Ta có: \(sin^2x+sin^2\left(90-x\right)=sin^2x+cos^2x=1.\)
áp dụng: A = 2
b)Ta có: \(cos\left(x\right)=-cos\left(180-x\right)\)
áp dụng: B = 0
c) Ta có: \(tan\left(x\right)\cdot tan\left(90-x\right)=\frac{sinx}{cosx}\cdot\frac{sin\left(90-x\right)}{cos\left(90-x\right)}=\frac{sinx}{cosx}\cdot\frac{cosx}{sinx}=1\)
áp dụng: C = 1
trả dép em về
1. Tính giá trị biểu thức
S= cos70 +cos50 -cos10
2. Cho a+b=π/4. Cm
(1+tanα).(1+tanβ) =2
3. Tính giá trị biểu thức
P= sin^2 10¤ +sin^2 50¤ +sin^2 70¤
1.
\(cos70+cos50=2cos\dfrac{70+50}{2}.cos\dfrac{70-50}{2}=2.cos60.cos10=2.\dfrac{1}{2}cos10\)
\(cos70+cos50-cos10=0\)
2.\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}=1\Rightarrow tana+tanb+tana.tanb+1=2\Leftrightarrow\left(1+tana\right)\left(1+tanb\right)=2\)
Tính giá trị biểu thức sau:
A= sin2 20 độ + sin2 30 độ + sin2 40 độ + sin2 70 độ + sin2 60 độ + sin250 độ - tan245 độ
Các bạn giải nhanh giúp mình nhé, mk sẽ hậy tạ sau
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Lời giải:
\(M=\frac{\frac{\sin a}{\cos a}+1}{\frac{\sin a}{\cos a}-1}=\frac{\tan a+1}{\tan a-1}=\frac{\frac{3}{5}+1}{\frac{3}{5}-1}=-4\)
\(N = \frac{\frac{\sin a\cos a}{\cos ^2a}}{\frac{\sin ^2a-\cos ^2a}{\cos ^2a}}=\frac{\frac{\sin a}{\cos a}}{(\frac{\sin a}{\cos a})^2-1}=\frac{\tan a}{\tan ^2a-1}=\frac{\frac{3}{5}}{\frac{3^2}{5^2}-1}=\frac{-15}{16}\)
Tính giá trị của :
sin(10o)+sin(20o)+...+sin(70o)+sin(80o)
Ai giải được mình cho 1 t.i.c.k nhoa!
\(\sin^210^o+\sin^220^o+\sin^230^o+\sin^240^o+\sin^250^o+\sin^260^o+\sin^270^o+\sin^280^o\)
\(=\cos^280^o+\cos^270^o+\cos^260^o+\cos^250^o+\sin^250^o+\sin^260^o+\sin^270^o+\sin^280^o\)
\(=\left(\sin^280^o+\cos^280^o\right)+\left(\sin^270^o+\cos^270^o\right)+\left(\sin^260^o+\cos^260^o\right)+\left(\sin^250^o+\cos^250^o\right)\)
\(=1+1+1+1\)
\(=4\)
Vậy ....
Tính giá trị của biểu thức
A = \(Sin^21o+Sin^22o+...+Sin^288o+Sin^289o-\frac{1}{2}\)
B = \(tan^21o.tan^22o...tan^288o.tan^289o\)
( Ghi chi tiết ra nhea )