Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 4 2018 lúc 18:05

Đáp án A

Có 2 mệnh đề sai là mệnh đề (3) và mệnh đề (4).

Mệnh đề (3) sai vì nếu hai cực trị của hàm số cùng dấu thì đồ thị hàm số chỉ cắt trục Ox tại một điểm.

Mệnh đề (4) sai lý do tương tự mệnh đề (3).

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 2 2018 lúc 15:21

Đáp án C

Phương pháp: Tìm các điểm cực trị của hàm số.

Cách giải: TXĐ: D = R

Ta có: 

Vì 

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 11 2019 lúc 3:54

 

Hình ảnh trên là một phần đồ thị của y trên tập xác định. Ta thấy rằng hàm số đạt cực đại tại x = 2 nhưng không chắc rằng có còn điểm cực đại nào khác trên những khoảng rộng hơn hay không (I) sai, (III) đúng.

Hàm số không xác định tại x = 1 nên không thể đạt cực tiểu tại điểm này =>(II) sai.

Chọn B

Bình luận (0)
CB
Xem chi tiết
DH
11 tháng 8 2021 lúc 9:49

\(y=x^4-2\left(m^2-m+1\right)x+m-1\)

\(y'=4x^3-4\left(m^2-m+1\right)x\)

\(y'=0\Leftrightarrow4x^3-4\left(m^2-m+1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{m^2-m+1}\end{cases}}\)

Khoảng cách giữa hai điểm cực tiểu là: 

\(2\sqrt{m^2-m+1}=2\sqrt{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge2\sqrt{\frac{3}{4}}\)

Dấu \(=\)khi \(m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
13 tháng 11 2018 lúc 10:37

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2017 lúc 16:17

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 8 2019 lúc 14:53

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 1 2017 lúc 11:26

Đáp án C.

y = (x + 1)(x – 2)2.

y' = 3x2 – 6x 

Khoảng cách giữa hai điểm cực trị AB = 2√5

Bình luận (0)
HM
Xem chi tiết
AH
30 tháng 7 2021 lúc 11:09

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

Bình luận (0)