Những câu hỏi liên quan
NH
Xem chi tiết
NM
30 tháng 12 2015 lúc 12:32

\(\left(a+b-c\right)^3>0\Leftrightarrow\left(a+b\right)^3-c^3-3\left(a+b\right)c\left(a+b-c\right)>0\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-c\left(a+b-c\right)\right]>c^3\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-ca-cb+c^2\right]>c^3\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]>c^3\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left(a-c\right)\left(b-c\right)>c^3\)

Mặt khác : \(abc\ge\left(a+b\right)\left(a-c\right)\left(b-c\right)\)( chứng minh hộ mình cái )

=> dpcm

Bình luận (0)
TN
30 tháng 12 2015 lúc 12:32

xin lỗi em mới học lớp 6 vô chtt nhé

Bình luận (0)
NT
Xem chi tiết
DG
Xem chi tiết
H24
Xem chi tiết
H24
6 tháng 1 2018 lúc 19:32

C/m \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

+) Từ giải thiết suy ra : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)( Vì a + b + c > 0 )

+) Biến đổi được kết quả : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)Tam giác đó là tam giác đề ( đpcm 0

Vậy tam giác đó là tam giác đều

Bình luận (0)
KT
6 tháng 1 2018 lúc 19:33

            \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì  \(a,b,c\)là độ dài 3 cạnh của tam giác nên  \(a+b+c=0\)

\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2-\left(c-a\right)^2=0\)              (mk lm tắt nhé)

\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow\)\(a=b=c\)

Vậy  tam giác đó là tam giác đều

Bình luận (0)
KT
6 tháng 1 2018 lúc 19:35

mk nhầm chút nhé

Vì   a,b,c  là độ dài các cạnh của tam giác nên  \(a+b+c\ne0\)

Bình luận (0)
NA
Xem chi tiết
VD
2 tháng 2 2016 lúc 19:27

a+b+c => a+b= -c

=> (a+b)= (-c)2

=> a3+b3+3ab(a+b) = -c2

=> a3+b3+c3 = -3ab(a+b)

=> a2+b2+c= -3ab(-c) = 3abc

Bình luận (0)
LA
Xem chi tiết
NL
20 tháng 11 2014 lúc 20:32

thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được 

(a+b+c).(a2+b2+c2-ab-bc-ca)=0

nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0

mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0

vậy a2+b2+c2-ab-bc-bc-ca=0

đặt đa thức đó bằng A

A=0 nên 2xA=0

phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0

nên a=b=c vậy là tam giác đều

 

Bình luận (0)
LT
24 tháng 3 2017 lúc 21:22

mình nghĩ là tam giác đều

Bình luận (0)
H24
4 tháng 9 2017 lúc 19:57

\(a^3+b^3+c^3-3abc\)\(=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)

\(\Rightarrow\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0

\(\Rightarrow a+b+c\ne0\)

\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)                          \(\left(1\right)\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(với mọi a,b,c)

Để được (1) thì:

\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Rightarrow a=b=c\)( tam giác đều) \(\left(\text{Đ}PCM\right)\)

Bình luận (0)
AK
Xem chi tiết
H24
2 tháng 10 2019 lúc 17:17

dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:

a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.

dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!

Bình luận (0)
H24
2 tháng 10 2019 lúc 21:06

bất đẳng thức cô-si là một trong những BĐT cơ bản rất hay sử dụng khi thi HSG toán 8\(\frac{a+b}{2}>=\sqrt{ab}\)

Chứng minh (\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)=>\(a+b>=2\sqrt{ab}\)=>\(\frac{a+b}{2}>=\sqrt{ab}\)vậy nhé !!!!

Bình luận (0)
TH
Xem chi tiết
TT
27 tháng 9 2020 lúc 16:50

Theo BĐT tam giác có :

\(a+b>c\)

\(\rightarrow\left(a+b\right)^3>c^3\)

\(\rightarrow a^3+b^3+3ab.\left(a+b\right)>c^3\)

\(\rightarrow a^3+b^3+3ab.c>c^3\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết