giả sử a,b,c là 3 cạnh của tam giác chứng minh rằng
a^3+b^3 +3abc >c^3
giả sử a,b,c là 3 cạnh của tam giác chứng minh rằng
a^3+b^3 +3abc >c^3
\(\left(a+b-c\right)^3>0\Leftrightarrow\left(a+b\right)^3-c^3-3\left(a+b\right)c\left(a+b-c\right)>0\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-c\left(a+b-c\right)\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-ca-cb+c^2\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]>c^3\)
\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left(a-c\right)\left(b-c\right)>c^3\)
Mặt khác : \(abc\ge\left(a+b\right)\left(a-c\right)\left(b-c\right)\)( chứng minh hộ mình cái )
=> dpcm
cho a, b,c là độ dài ba cạnh của 1 tam giác, chứng minh rằng a mũ 3 + b mũ 3 + 3abc>c mũ 3
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :
Gọi a , b , c là độ dài 3 cạnh của tam giác thỏa mãn : a^3 + b^3 + c^3 = 3abc. Chứng minh tam giác đều.
C/m \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
+) Từ giải thiết suy ra : \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)( Vì a + b + c > 0 )
+) Biến đổi được kết quả : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)Tam giác đó là tam giác đề ( đpcm 0
Vậy tam giác đó là tam giác đều
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a,b,c\)là độ dài 3 cạnh của tam giác nên \(a+b+c=0\)
\(\Rightarrow\)\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2-\left(c-a\right)^2=0\) (mk lm tắt nhé)
\(\Rightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Rightarrow\)\(a=b=c\)
Vậy tam giác đó là tam giác đều
mk nhầm chút nhé
Vì a,b,c là độ dài các cạnh của tam giác nên \(a+b+c\ne0\)
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :a+b+c => a+b= -c
=> (a+b)2 = (-c)2
=> a3+b3+3ab(a+b) = -c2
=> a3+b3+c3 = -3ab(a+b)
=> a2+b2+c2 = -3ab(-c) = 3abc
Cho tam giác có độ dài 3 cạnh là a, b, c thỏa mãn: a^3+ b^3+c^3 =3abc. Chứng minh: Tam giác đó đều.
thực hiện trừ 2 vế ta (vế trái cho vế phải) ta được
(a+b+c).(a2+b2+c2-ab-bc-ca)=0
nên hoặc a+b+c=0 hoặc nhân tử còn lại bằng 0
mà a,b,c là 3 cạnh 1 tam giác nên a+b+c>0
vậy a2+b2+c2-ab-bc-bc-ca=0
đặt đa thức đó bằng A
A=0 nên 2xA=0
phân tích thành hằng đẳng thức ta có (a-b)2+(b-c)2+(c-a)2=0
nên a=b=c vậy là tam giác đều
\(a^3+b^3+c^3-3abc\)\(=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Rightarrow\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) \(\left(1\right)\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(với mọi a,b,c)
Để được (1) thì:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Rightarrow a=b=c\)( tam giác đều) \(\left(\text{Đ}PCM\right)\)
Gọi a, b, c là độ dài ba cạnh của tam giác thỏa mãn: a3 + b3 + c3 = 3abc. Chứng minh tam giác đều
dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:
a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.
dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!
bất đẳng thức cô-si là một trong những BĐT cơ bản rất hay sử dụng khi thi HSG toán 8\(\frac{a+b}{2}>=\sqrt{ab}\)
Chứng minh (\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)=>\(a+b>=2\sqrt{ab}\)=>\(\frac{a+b}{2}>=\sqrt{ab}\)vậy nhé !!!!
Cho a,b,c là 3 cạnh của 1 tam giác
Chứng minh a3+b3+3abc>c3
Theo BĐT tam giác có :
\(a+b>c\)
\(\rightarrow\left(a+b\right)^3>c^3\)
\(\rightarrow a^3+b^3+3ab.\left(a+b\right)>c^3\)
\(\rightarrow a^3+b^3+3ab.c>c^3\)
Cho a,b,c là độ dài ba cạnh của một tam giác. Chứng minh rằng: \(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\le a^3+b^3+c^3+3abc\) ?