Tìm n nhỏ nhất biết,n chia cho 3 dư 1,chia cho 4 dư 2,cho 5 dư 3,cho 6 dư 4.
1. Tìm số tự nhiên n và chữ số a biết : 1+2+3+4+.......+n = aaa
2.Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia hết cho 11
1+3+3+...+n=aaa
=> n(n-1):2=a.111
=>n(n-1)=a.222=a.3.2.37
=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36
vậy..............
?????????????????????????????????????????
tìm số n nhỏ nhất biết rắng số đó chia cho 2 dư 1 ;chia cho 3 dư 2 ; chia cho 4 dư 3 và chia cho 5 dư 4
tìm số tự nhiên n nhỏ nhất biết: n chia 3 dư 1; n chia 4 dư 2; n chia 5 dư 3; n chia 6 dư 4 và n chia hết cho 11
Tìm STN nhỏ nhất, biết rằng số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia cho 10 dư 8.
mình đánh lộn số 68
nha bạn
cho minh dung nha
Tìm 1 số nhỏ nhất chia cho 2 dư 1 ,chia 3 dư 2 ,chia 4 dư 3 ,chia 5 dư 4
Tìm 1 số nhỏ nhất chia cho 3 dư 1 ,chia 4 dư 2 , chia 5 dư 3 và chia 6 dư 4
Gọi số nhỏ nhất là a :
Theo bài ra ta có
a + 1 chia hết cho 2;3 ;4; ;5
a nhỏ nhất => a + 1 nhỏ nhất => a +1 là BCNN { 2;3;4;5}
2 = 2
3=3
4= 2^2
5=5
=> BCNN { 2;3;4;5 } = 2^2.3.5 = 60
=> a + 1 = 60 => a = 59
Câu b tương tự
a) Gọi a là số cần tìm
a chia cho 2 dư 1 => a + 1 chia hết cho 2
a chia cho 3 dư 2 => a + 1 chia hết cho 3
a chia cho 4 dư 3 => a + 1 chia hết cho 4
a chia cho 5 dư 4 => a + 1 chia hết cho 5
=> a + 1 chia hết cho 2; 3; 4; 5. Vì số chia hết cho 4 thì chia hết cho 2 => a+ 1 chia hết cho 3; 4;5. Mà a + 1 nhỏ nhất nên
a+ 1 = 3 x 4 x 5 = 60 => a = 60 - 1= 59
b) Gọi số cần tìm là x
x chia cho 3 dư 1 => x + 2 chia hết cho 3
x chia cho 4 dư 2 => x + 2 chia hết cho 4
x chia cho 5 dư 3 => x + 2 chia hết cho 5
x chia cho 6 dư 4 => x + 2 chia hết cho 6
=> x + 2 chia hết cho 3;4; 5; 6.
Vì số chia hết cho 4 thì chia hết cho 2. Số chia hết cho cả 2 và 3 sẽ chia hết cho 6 nên chỉ cần x + 2 chia hết cho 3; 4; 5
mà x + 2 nhỏ nhất => x + 2 = 3 x 4 x 5 = 60 => x = 60 - 2 = 58
tìm snt nhỏ nhất khác 0 biết rằng khi đem số đó chia cho 2 dư 1 chia cho 3 dư 2 chia cho 4 dư 3 chia cho 5 dư 4 chia cho 6 dư 5 chia cho 7 hết
gọi số đó là x
ta có \(\hept{\begin{cases}x+1\text{ chia hết cho 2,3,4,5,6}\\x\text{ chia hết cho 7}\end{cases}}\) vậy x +1 là bội của 60 và x là bội của 7
\(\Rightarrow\hept{\begin{cases}x=60k-1\\x=7h\end{cases}\Leftrightarrow60k-1=7h\Leftrightarrow60\left(k-2\right)=7\left(h-17\right)}\)
vậy k-2 là bội của 7 , và giá trị nhỏ nhất của k là 2
Vậy giá trị nhỏ nhất của x là \(2\times60-1=119\)
Bài tập:
Bài 1: Chứng minh: Với k thuộc N*, ta luôn có: k (k+1) (k+2) - (k-1) k (k+1) = 3.k (k+1)
Áp dụng tính tổng: S = 1.2 + 2.3 + 3.4 + ... + n.(n+1)
Bài 2: Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4 và chia hết cho 11.
Bài 3: Một số chia cho 4 dư 3, chia 17 dư 9, chia 19 dư 13. Hỏi số đó chia cho 1292 dư bao nhiêu?
Bài 4: Tìm một số nhỏ nhất, biết rằng khi chia số đó cho 3 dư 2, cho 4 dư 3, cho 5 dư 4 và cho 10 dư 9.
Bài 5: Số học sinh của một trường Trung học Cơ Sở là số tự nhiên nhỏ nhất có 4 chữ số mà khi chia số đó cho 5 hoặc 6, hoặc cho 7 thì đều dư 1. Hãy tìm số học sinh của trường Trung học Cơ Sở đó.
*Giúp mình với, chiều mình phải nộp bài rồi!!!*
Tìm số tự nhiên n nhỏ nhất biết rằng khi khi chia cho 2 thì dư 1;chia cho 3 thì dư 2;chia cho 4 thì dư 3;chia cho 5 thì dư 4 và chia hết cho 7
Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).
suy ra \(n+1\in BC\left(2,3,4,5\right)\)
Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).
- \(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).
- \(n+1=120\Leftrightarrow n=119⋮7\).
Vậy giá trị nhỏ nhất của \(n\)là \(119\).
a) Tìm số tự nhiên nhỏ nhất sao cho số đó chia 3 dư 1; chia 4 dư 2; chia 5 dư 3; chia 6 dư 4.
b)Tìm số tự nhiên n sao cho 4n - 5 chia hết cho 2n - 1
Câu a dễ ợt mà nó xưa lắm rùi
Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
Câu b cũng vậy
Ta có:
4n - 5
= 4n - 2 - 3
= 2(2n - 1) - 3
4n - 5⋮2n - 1
⇔2(2n - 1) - 3⋮2n - 1
2(2n - 1)⋮2n - 1
=>3⋮2n - 1
hay 2n - 1∈Ư(3)
Ư(3) = {1;-1;3;-3}
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1
Vì n ∈ N nên n = {0;1;2}