Những câu hỏi liên quan
LN
Xem chi tiết
DN
Xem chi tiết
NT
6 tháng 5 2016 lúc 21:10

Ta có:

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(x^2+y^2+2xy+7x+7y+y^2+10=0\)

\(x^2+y^2+1+2xy+2x+2y+5x+5y+5+4=0\)

\(\left(x+y+1\right)^2+5\left(x+y+1\right)+4=0\)

\(\left(x+y+1\right)^2+\left(x+y+1\right)+4\left(x+y+1\right)+4=0\)

\(\left(x+y+1\right)\left(x+y+2\right)+4\left(x+y+1\right)=0\)

\(\left(x+y+1\right)\left(x+y+6\right)=0\)

\(x+y=-1\)\(x+y=-6\)

Max T=x+y+1=-6+1=-5 <=> x+y=-6

Min T=x+y+1=-1+1=0 <=> x+y=-1

Bình luận (0)
NT
Xem chi tiết
HH
5 tháng 8 2016 lúc 21:20
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

Bình luận (0)
NT
Xem chi tiết
HH
5 tháng 8 2016 lúc 21:17
GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

Bình luận (0)
OC
18 tháng 9 2019 lúc 17:19

đáp số 

x,y=0

jhok tốt

Bình luận (0)
DA
Xem chi tiết
BT
Xem chi tiết
KK
Xem chi tiết
TY
Xem chi tiết
ND
30 tháng 7 2018 lúc 18:48

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

Bình luận (0)
KM
Xem chi tiết