Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 11 2018 lúc 4:49

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 6 2019 lúc 15:14

Chọn A.

Đặt . Với  suy ra 1 ≤  t ≤ 2.

Phương trình đã cho trở thành t2 + t = 2m + 2  (*)

Phương trình đã cho có nghiệm thuộc đoạn   có nghiệm 1 ≤ t ≤ 2

Xét hàm số f(t) = t2 + t với1 ≤ t ≤ 2 , ta thấy  f’(t) = 2t + 1 nên f(t)  là hàm đồng biến trên đoạn [1; 2]

Suy ra 2 = f(1) ≤ f(t) ≤ f(2) = 6

Vậy phương trình có nghiệm khi 2 ≤ 2m + 2 ≤ 6 hay 0 ≤ m ≤ 2

 Suy ra có 3 giá trị nguyên m  thỏa mãn yêu cầu bài toán.

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 5 2017 lúc 18:30

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 8 2018 lúc 4:29

Chọn B

Phương pháp:

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Ta sử dụng phương trình  có hai nghiệm dương phân biệt 

Cách giải:

Ta có 

 

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Khi đó 

Mà  nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 10 2017 lúc 2:00

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 8 2017 lúc 7:14

Đáp án C

Đặt t = log 2 x  với x ∈ 0 ; + ∞  thì t ∈ ℝ , khi đó bất phương trình trở thành  t 2 + m t - m > 0 *

Để (*) nghiệm đúng với mọi t ∈ ℝ ⇔ ∆ * ≤ 0 ⇔ m 2 + 4 m ≤ 0 ⇔ m ∈ - 4 ; 0  

Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 12 2018 lúc 17:07

Đáp án A

Để hàm số đồng biến trên khoảng 2 ; + ∞ thì

Xét f x = 3 x 2 − 6 x + 5 12 x − 1 có đạo hàm  f ' x = 3 x 2 − 6 x + 1 12 x − 1 2 > 0 x > 2

Do đó f(x) đồng biến trên khoảng 2 ; + ∞  hay  M i n f x = f 2 = 5 12 ⇒ m < 5 12

Lại có m ∈ − 2017 ; 2017 m ∈ ℤ .

Suy ra có 2018 giá trị của m thỏa mãn

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 6 2018 lúc 16:01

Đáp án D

Điều kiện:  x ∈ − 2 3 ; 2 ⇒ 1 ⇔ 4 m − 1 log 3 x + 1 2 + 4 m − 5 log 3 x + 1 + 4 m − 4 = 0

Đặt t = log 3 x + 1 ⇒ ∈ − 1 ; 1 ⇒ 1 ⇔ m − 1 t 2 + m − 5 t + m − 1 = 0 ⇔ m = t 2 + 5 t + 1 t 2 + t + 1 2  

Xét hàm số f t = t 2 + 5 t + 1 t 2 + t + 1 , t ∈ − 1 ; 1 ,  ta có  f ' t = 4 t 2 − 1 t 2 + t + 1 2 ⇒ f ' t = 0 ⇔ t = ± 1

Suy ra f − 1 ≤ f t − 1 ; 1 ≤ f 1 ⇔ − 1 ≤ f t − 1 ; 1 ≤ 7 3 ⇒ 2 ⇔ − 1 ≤ m ≤ 7 3  

Suy ra có 3 giá trị nguyên âm của m thỏa đề bài

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 4 2018 lúc 8:08

Bình luận (0)