Tìm n thuộc N biết 39n + 46 chia hết cho n+1
Tìm n€N,biết 39n+46 chia hết cho n+1
tổng trên có n+1 số số hạng
\(A=\frac{\left(n+1\right)\left(2n+1+1\right)}{2}\)
\(A=\frac{2\left(n+1\right)^2}{2}\)
\(A=\left(n+1\right)^2\) là chính phương
Cmr a, với mọi a,b thuộc N thì A= 2n +11...1:39n chữ số 1
b, với mọi a,b,n thuộc N thì B= (10^n -1)*a+(111...1-n)*b chia hết cho 9(n chữ số 1)
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc N
1. n+7 chia hết cho n-2
2. 46-2n chia hết cho n
3. 3n+15 chia hết cho n+1
4. 8n-7 chia hết cho 4n +1
5.n2+2n+6 chia hết cho n+2
6. n2+2n+6 chia hết cho n+4
7. 7n chia hết cho n-3
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
cho A=7n+3n-1 và B=7n+1+39n+10-1 (n là số tự nhiên)
CM:A chia hết cho 9 khi và chỉ khi B chia hết cho 9 và điều ngược lại
Bài 1 : Chứng minh : C= n . (n2 + 1) . (n2 + 4) chia hết cho 5
Bài 2 : Tìm n thuộc N để : 2n - 1 chia hết cho 7
Bài 3 : Tìm chữ số x,y :
a ) 34x5y chia hết cho 4 và 9
b ) 2x78 chia hết cho 17
Bài 4 : Tổng của 46 số tự nhiên liên tiếp có chia hết cho 46 không ? Vì sao ?
Giúp mk với => #Ttt
Bài 4 :
Gọi các số đó là a,a+1,a+2,a+3.......,a+45
Ta có
a+(a+1)+(a+2)+(a+3)+..........+(a+45)
46a+ (1+2+3+4+5+.........+45)
46a+1035
Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46
=> 46a +1035 không chia hết cho 46
Vậy 46 số tự nhiên liên tiếp không chia hết cho 46
Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1
=> n^2 + 4 chia hết cho 5
Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4
=> n^2 + 1 chia hết cho 5
Nếu n chia hết cho 5
=> A chia hết cho 5
Câu 2 : * n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)
1. tìm n thuộc Z biết :
a, 7 chia hết cho n+2
b, n-2 là ước của -5
c, -10 là bội 2n-1
2.tìm n thuộc Z biết:
2n-5 chia hết cho n+1 và n+1 chia hết cho 2n-5
3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
1.Cmr 46n+296.13n chia hết cho 1947 với n >0,n thuộc N,n lẻ
2.Cmr 22n(22n+1-1)-1 chia hết cho 9 với n thuộc N*
Tìm n thuộc N biết
n-1 chia hết cho 15 và 1001 chia hết cho n +1
\(n-1⋮n+1\Rightarrow\left(n+1\right)-2⋮n+1\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\left\{1;2;-1;-2\right\}\Rightarrow n\in\left\{0;1;-2;-3\right\}\)
mà nếu n là một trong các số trên thì n ko chia hết cho 15 và 1001 => n thuộc rỗng