Những câu hỏi liên quan
LY
Xem chi tiết
TL
Xem chi tiết
DH
7 tháng 2 2016 lúc 9:30

Để \(A=\frac{12}{3n-1}\) là số nguyên thì 12 ⋮ 3n - 1 ⇒ 3n -1 ∈ Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 6 ; + 12 }

3n - 1- 1  1    - 2   2    - 3  3   - 6  6   - 1212  
3n02- 13- 24- 57- 1113
n02/3- 1/31- 2/34/3- 5/37/3- 11/313/3


Thỏa mãn đề bài n { 0; 1 }

Các ý khác làm tương tự
 

 

Bình luận (0)
QT
7 tháng 2 2016 lúc 9:35

Để D là phân số nguyên thì 6n-3/3n+1 phải là 1 số nguyên

Ta có 6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1 - 5/3n+1=2+ 5/3n+1

Để D có GT nguyên thì 5/3n+1 có GT nguyên hay 5 chia hết cho 3n+1

=> 3n+1 thuộc Ước của 5

=> 3n+1 thuộc {-5;-1;1;5}

=> n thuộc {-2;-2/3;0;4/3}

Bình luận (0)
IY
25 tháng 3 2019 lúc 11:12

đinh đuc hùng thiếu 4 trong ước của 12

Bình luận (0)
ML
Xem chi tiết
ML
6 tháng 3 2018 lúc 21:28

giúp mình nha !

Bình luận (0)
CC
Xem chi tiết
NU
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Bình luận (0)
 Khách vãng lai đã xóa
CC
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TP
Xem chi tiết
VT
Xem chi tiết
HT
Xem chi tiết

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Bình luận (0)

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

Bình luận (0)
NT
Xem chi tiết
VN
5 tháng 3 2016 lúc 13:43

a) \(A=\frac{n-4}{n+3}\left(n\in Z\right)\)

\(A=\frac{\left(n+3\right)-7}{n+3}\)

\(\Rightarrow\left(n+3\right)\inƯ_{\left(7\right)}=\left\{-7;-1;1;7\right\}\)

Lập bảng tìm n:

n+3-7-117
n-10-4-24
Thỏa mãn TMTMTMTM

Vậy \(n\in\left\{-10;-4;-2;4\right\}\)để \(A\in Z\)

b) \(B=\frac{3n-7}{2n+3}\left(n\in Z\right)\)

\(B=\frac{\left(3n+3\right)-10}{2n+3}\)

\(\Rightarrow2n+3\inƯ_{10}=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

Lập bảng tìm n:

2n+3-10-5-2-112510
n-6,5-4-2,5-2-1-0,546,5
Thỏa mãnloạiTMloạiTMTMloạiTMloại

Vậy \(n\in\left\{-4;-2;-1;4\right\}\)để \(A\in Z\)

Bình luận (0)