Những câu hỏi liên quan
ZZ
Xem chi tiết
NM
12 tháng 5 2016 lúc 7:33

Đặt vế trái là A ta có:

\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
 

Bình luận (0)
DT
29 tháng 11 2022 lúc 22:20

\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...

Bình luận (0)
DT
29 tháng 11 2022 lúc 22:21
12 tháng 5 2016 lúc 7:33  

Đặt vế trái là A ta có:

\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}

\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}

Bình luận (0)
NB
Xem chi tiết
XO
14 tháng 7 2021 lúc 10:31

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{2021}\)

<=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)

<=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)

<=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)

<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2042}\)

<=> \(\frac{1}{x+1}=\frac{1}{2021}\)

<=> x + 1 = 2021 

<=> x = 2020

Bình luận (0)
 Khách vãng lai đã xóa
NQ
16 tháng 7 2021 lúc 15:50

Có phải là bình 6a3 học trường THCS Nguyễn Trãi đúng không 

Bình luận (0)
 Khách vãng lai đã xóa
QD
Xem chi tiết
PQ
28 tháng 8 2015 lúc 16:11

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)

Bình luận (0)
H24
17 tháng 2 2018 lúc 15:51

000000000000000000000000000

Bình luận (0)
TN
15 tháng 4 2018 lúc 9:13

bang 2000

hihi...sai do

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 5 2015 lúc 16:37

ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)

giải 1-2/(x+1) = 2007/2009 ta được x=2008

Bình luận (0)
KK
Xem chi tiết
LD
20 tháng 5 2016 lúc 5:41

= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)

= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]

=2[1/2-1/(x+1)]= (x-1)/(x+1)

= 2001/2003

==> x=2002

Bình luận (1)
VC
20 tháng 5 2016 lúc 5:48

x=2002

Bình luận (0)
TN
20 tháng 5 2016 lúc 5:51

Mình Giúp Họ Giải Toán Đầu tiên Mà Họ Lại Làm Ngơ sai bét

Bình luận (0)
LN
Xem chi tiết
ST
Xem chi tiết
CH
10 tháng 10 2017 lúc 22:29

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{99}{101}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{99}{101}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{99}{202}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{101}\)

\(\Leftrightarrow x=100\)

Bình luận (0)
TL
Xem chi tiết
NT
4 tháng 5 2015 lúc 23:25

Ta có : 1/3+1/6+1/10+ .....+2/x.(x+1)=2010/2012

=>2/6+2/12+2/20+........+2/x(x+1)=2010/2012

=>2.(1/2.3+1/3.4+1/4.5+.....+1/x.(x+1)=2010/2012

                  ................................

Bạn tự làm tiếp nhé ! x=1005


Bình luận (0)
ST
Xem chi tiết