Chứng minh bằng phương pháp quy nạp :
62n + 1 + 5n + 2 chia hết cho 31
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh bằng phương pháp quy nạp n 3 + 11 n chia hết cho 6.
* Với n =1 ta có 1 3 + 11.1 = 12 chia hết cho 6 đúng.
* Giả sử với n = k thì k 3 + 11 k chia hết cho 6.
* Ta phải chứng minh với n =k+1 thì ( k + 1 ) 3 + 11(k +1) chia hết cho 6.
Thật vậy ta có :
k + 1 3 + 11 k + 1 = k 3 + 3 k 2 + 3 k + 1 + 11 k + 11 = ( k 3 + 11 k ) + 3 k ( k + 1 ) + 12 *
Ta có; k 3 +11k chia hết cho 6 theo bước 2.
k(k+1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2 ⇒ 3 k ( k + 1 ) ⋮ 6
Và 12 hiển nhiên chia hết cho 6.
Từ đó suy ra (*) chia hết cho 6 (đpcm).
bằng phương pháp chứng minh quy nạp toán học hãy chứng minh 2^(5n+3)+5^(n)x3^(n+2) chia hết cho 17 (với n thuộc N)
n^3 + 3n^2 + 5n chia hết cho 3
Tìm kết quả, sử dụng phương pháp quy nạp
Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$
Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$
Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....
Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$
Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$
Thật vậy:
$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$
$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$
Vậy ta có đpcm.
chứng minh chia hết bằng phương pháp quy nạp
10n-4n+3n chia hết cho 9
Chứng minh bằng phương pháp quy nạp:
Chứng minh rằng n4-n2 chia hết cho 12 với mọi số nguyên dương n
Vậy đẳng thức đúng với n = 1.
Giả sử với n = k \(\left(k\ge1\right)\), khi đó ta có:\(k^4-k^2\) chia hết cho 12
Ta cần chứng minh mệnh đề đúng với n = k + 1.Ta có:
(k + 1)4 - (k + 1)2
\(=\left(k+1\right)^2\left[\left(k+1\right)^2-1\right]\)
\(=\left(k+1\right)^2\left(k+2\right)k\) chia hết cho 12
Vậy đẳng thức đúng với n = k + 1.
Kết luận: Vậy n4 - n2 chia hết cho 12 với mọi số nguyên dương N.
P/s: e chưa đc học phương pháp quy nạp nên chỉ có thể nhìn theo bài mẫu rồi trình bày tương tự thoy, nên có j sai, mong a bỏ qua cho a~ ^^
Chứng minh bằng phương thức quy nạp : 62n+1 + 5n+2 chia hết cho 31 ( n\(\in\) N )
Xét n=0 => 62n+1 + 5n+2 = 31chia hết 31
Xét n=1 => 62n+1 + 5n+2 = 341 chia hết 31
Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3 + 5k+3
Ta có 62k+1 + 5k+2 = 36k.6+5k.25 chia hết 31
<=> 62k+3 + 5k+3 = 36k.216+5k.125
Xét hiệu : 62k+3 + 5k+3 − 62k+1 − 5k+2 = 36k.216+5k.125−36k.6−5k.25
= 36k.210+5k.100 = 36k.207+5k.93−7(36k−5k)
Có 217 chia hết 31, 93 chia hết 31và 36k−5k chia hết 36 - 5 = 31
=> 62n+3 + 5k+3 − 62k+1 − 5k+2 chia hết 31.
Mà 62k+1 + 5k+2 chia hết 31 nên 62k+3 + 5k+3 chia hết 31
Phép quy nạp được chứng minh hoàn toàn,ta có đpcm
Chứng minh bằng phương thức quy nạp : 62n+1 + 5n+2 chia hết cho 31 ( n\(\in\)N )
Chứng minh các đẳng thức, mệnh đề sau bằng phương pháp quy nạp toán học: (n6-3n5+6n4-7n3+5n2-2n) chia hết 24
Với \(n=0\Rightarrow0-0+0-0+0-0=0⋮24\left(đúng\right)\)
Với \(n=1\Rightarrow1-3+6-7+5-2=0⋮24\left(đúng\right)\)
G/s \(n=k\Rightarrow\left(k^6-3k^5+6k^4-7k^3+5k^2-2k\right)⋮24\)
\(\Rightarrow k\left(k^5-3k^4+6k^3-7k^2+5k-2\right)⋮24\\ \Rightarrow k\left(k+1\right)\left(k^2+k+1\right)\left(k^2-k+2\right)⋮24\)
Với \(n=k+1\), ta cần cm \(\left[\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\right]⋮24\)
Ta có \(\left(k+1\right)^6-3\left(k+1\right)^5+6\left(k+1\right)^4-7\left(k+1\right)^3+5\left(k+1\right)^2-2\left(k+1\right)\)
\(=\left(k+1\right)\left[\left(k+1\right)^5-3\left(k+1\right)^4+6\left(k+1\right)^3-7\left(k+1\right)+5\left(k+1\right)-2\right]\\ =\left(k+1\right)\left(k+1-1\right)\left[\left(k+1\right)^2-\left(k+1\right)+1\right]\left[\left(k+1\right)^2-\left(k+1\right)+2\right]\\ =k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)\)
Mà theo GT quy nạp ta có \(k\left(k+1\right)\left(k^2+k+1\right)\left(k^2+k+2\right)⋮24\)
Vậy ta được đpcm
bài 1;
A= 1+2+22+.....+2100
Cho tổng quát và chứng minh bằng phương pháp quy nạp
bài 2 :
A2= 1-2+22-23+.....+2100
Cho tổng quát và chứng minh bằng phương pháp quy nạp