Những câu hỏi liên quan
Xem chi tiết
NU
3 tháng 1 2020 lúc 18:40

Ta có:

A = 4 + 4 + 43 + 44 + ... + 499 + 4100

A = (4 + 42) + (43 + 44) + ... + (499 + 4100)

A = 4(1 + 4) + 43(1 + 4) + ... + 499(1 + 4)

A = 4.5 + 43.5 + ... + 499.5

A = 5.(4 + 43 + ... + 499)

Vậy A chia hết cho 5

Bình luận (0)
 Khách vãng lai đã xóa
SH
3 tháng 1 2020 lúc 18:43

\(A=4+4^2+4^3+...4^{99}+4^{100}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)

\(A=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{99}.\left(1+4\right)\)

\(A=4.5+4^3.5+..4^{99}.5\)

\(A=5.\left(4+4^3+...4^{99}\right)\)

\(\Rightarrow A⋮5\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
14 tháng 4 2020 lúc 15:57

A=4+42+43+44+......+499+4100

=> A=(4+42)+(43+44)+......+(499+4100)

=> A=4(1+4)+43(1+4)+.....+499(1+4)

=> A=4.5+43.5+.....+499.5

=> A=5(4+43+....+499)

=> A chia hết cho 5 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HT
9 tháng 8 2017 lúc 17:38

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

Bình luận (0)
NH
9 tháng 8 2017 lúc 19:24

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

Bình luận (0)
TT
16 tháng 8 2020 lúc 13:45

a)Cm A=10mũ99 cộng 104 chia hết cho hai và ba 

b)Cm B=10 mũ 100 cộng 17 chia hết cho 9

c)Cm 10 mũ 11 cộng với 8 chia hết cho 18 với n thuộc z và n bé hơn hoặc bằng 2

mong mọi người trả lời giúp mik cảm ơn các bạn

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
DH
23 tháng 12 2024 lúc 15:22

HHehe

Bình luận (0)
KP
Xem chi tiết
BP
15 tháng 9 2017 lúc 17:06

1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên 

Bình luận (0)
PH
Xem chi tiết
DN
29 tháng 10 2021 lúc 17:35

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

Bình luận (0)
 Khách vãng lai đã xóa
ND
28 tháng 10 2022 lúc 19:27

câu a của bạn thiếu 2 mũ 2

 

Bình luận (0)
UH
31 tháng 10 2023 lúc 19:19

67aiijajjhq

Bình luận (0)
PH
Xem chi tiết
NK
Xem chi tiết
H24
31 tháng 10 2021 lúc 18:00

\(A=2+2^2+2^3+...+2^{100}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{98}.6\)

\(A=6\left(1+2^2+...+2^{98}\right)\)

Có : \(6⋮6\)

\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)

\(\Rightarrow A⋮6\)

Bình luận (0)
 Khách vãng lai đã xóa
DT
11 tháng 10 2022 lúc 15:36

suuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

 

Bình luận (0)
KH
16 tháng 10 2024 lúc 16:00

A= 2 + 2\(^2\) + 2\(^3\) + .... + 2\(^{100}\)

A = (2 + 2\(^2\)) + (2\(^3\) + 2\(^4\)) + .... + (2\(^{99}\) + 2\(^{100}\))

\(\)A = (2 + 2\(^2\)) + 2\(^2\)(2 + 2\(^2\)) +....+ 2\(^{98}\) (2 + 2\(^2\))

A = 6 + 2\(^2\).6 + .... + 2\(^{98}\).6

A = 6 (1 + 2\(^2\) + .... + 2\(^{98}\)\(⋮\) 6

Bình luận (0)
BT
Xem chi tiết
LC
28 tháng 12 2016 lúc 17:00

a) 52003 + 52002 + 52001 chia hết cho 31

= 52001 . 52 + 52001 + 51 + 52001

= 52001 . ( 52 + 5 + 1 )

= 52001 . 31 chia hết cho 31

Bạn coi lại đề đi nhé , vì 439 + 440 + 441 không chia hết cho 28 nên mình không chứng minh được !

Nhưng nếu bạn nào thấy mình làm đúng phần a thì k cho mình nha !

Bình luận (0)
TH
4 tháng 9 2017 lúc 19:59

439+440+441=438(1+4+16)=438.21 chia hết cho 7

439+440+441 chia hết cho 4

Do đó biểu thức trên chia hết cho 28

Bình luận (0)
KS
4 tháng 9 2017 lúc 20:02

a, 5^2003+5^2002+5^2001

=5^2001.5^2+5^2001.5+5^2001.1

=5^2001.(5^2+5+1)

=5^2001.31 chia hết cho 31

b, 4^39+4^40+4^41

=4^38.4+4^38.4^2+4^38.4^3

=4^38.(4+4^2+4^3)

= 4^38.84 chia hết cho 28

Bình luận (0)
LT
Xem chi tiết
TN
30 tháng 12 2017 lúc 21:35

a = 2 + 22 +23+........................+ 2100 chia hết cho 62

  a =  [ 2 + 22 +23+.24+25  ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ] 

 a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ] 

a=  62 . [ 210 +  215 +  220 +......................+  2100 ] 

 Mà 62 chia hết cho 62 =>    62 . [ 210 +  215 +  220 +......................+  2100 ]   hay a chia hết cho 62

Bình luận (0)
NQ
30 tháng 12 2017 lúc 21:07

a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)

   = 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)

   = 62+2^5.62+....+2^95.62

   = 62.(1+2^5+....+2^95) chia hết cho 62

=> ĐPCM

k mk nha

Bình luận (0)
HV
4 tháng 1 2021 lúc 19:54

haha mình đang cần câu trả lời

 

Bình luận (0)