Cho p và p2+2 là các số nguyên tố
CMR: p3+2 và p4+2 cũng là các số nguyên tố
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
p1=2
p2=3
p3=5
p4=7
p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố
đúng thì tk nha
Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4) (1)
Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số
Suy ra chúgn lần lượt là.........(1)
mik thiếu chỗ tổng 3 số như Đặng Yến Ngọc nhsa
Cho số tự nhiên N=p1.p2^2.p3^3.p4^4, trong đó p1, p2, p3, p4 là các số nguyên tố đôi một khác nhau. Số các ước số của N là?
Số các ước của N là:
(1 + 1)(2 + 1)(3 + 1)(4 + 1) = 120 (ước)
Đ/S:...
cho p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
cho p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
cho p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
Tìm p1,p2,p3,p4,p...p8 là các số nguyên tố
sao cho p1^2+p2^2+p3^2+...+p7^2=p8^2
Chứng minh rằng: nếu p và p2 + 2 là các số nguyên tố thì p3 + 2 cũng là số nguyên tố.
TH1:p<3
+Vì p<3;mà p là số nguyên tố =>p=2.
Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)
TH2:p>3
+vì p>3 nên=>p=6k+1 hoặc p=6k+5.
Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là hợp số nên loại)
Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)
Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.
Câu 1: Chứng minh rằng: Nếu p và p2+2 là các số nguyên tố thì p3+2 cũng là số nguyên tố
Câu 2: Tìm x,y nguyên sao cho 2xy + x - 2y = 4
\(2xy+x-2y=4\\ \Rightarrow x\left(2y+1\right)-2y-1=4-1\\ \Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\\ \Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,2y+1\in Z\\x-1,2y+1\inƯ\left(3\right)\end{matrix}\right.\)
Ta có bảng:
x-1 | -1 | -3 | 1 | 3 |
2y+1 | -3 | -1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
Vậy \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(-2;-1\right);\left(2;1\right);\left(4;0\right)\right\}\)
a,tìm các số nguyên tố p1,p2,p3,p4,p5 thỏa mãn: p2-p1=p3-p2=p4-p3=p5-p4=6
b, tìm các số nguyên tố a,b,c biết: abc<ab+bc+ca
mọi người giúp mk nha mk cần gấp lắm