Những câu hỏi liên quan
JN
Xem chi tiết
VS
11 tháng 2 2017 lúc 21:47

a=726 thì A có giá trị lớn nhất là 2016 nhé

Bình luận (0)
PD
Xem chi tiết
DL
4 tháng 6 2016 lúc 6:44

\(A=2017-\frac{720}{a-6}=2017+\frac{720}{6-a}\)điều kiện \(a\ne6\)

Để A lớn nhất thì \(\frac{720}{6-a}\)phải là số dương lớn nhất; Suy ra \(6-a>0\Rightarrow a< 6\)và \(6-a\)phải  khác 0 và nhỏ nhất. 

\(a\in N;a< 6\)nên \(6-a\)nhỏ nhất = 1 khi \(a=5\).

GTLN là 2737

Bình luận (0)
PT
Xem chi tiết
ND
Xem chi tiết
NT
15 tháng 9 2023 lúc 8:42

Ta có :

\(Q=\dfrac{x+1}{x-\sqrt[]{x}+1}\left(x\inℕ\right)\)

\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(\sqrt[3]{x}+1\right)\left(x-\sqrt[]{x}+1\right)}\)

\(\Leftrightarrow Q=\dfrac{\left(x+1\right)\left(\sqrt[3]{x}+1\right)}{\left(x+1\right)}\)

\(\Leftrightarrow Q=\sqrt[3]{x}+1\)

Để \(Q\inℕ\)

\(\Leftrightarrow\sqrt[3]{x}+1\inℕ\)

\(\Leftrightarrow\sqrt[3]{x}\inℕ\)

\(\Leftrightarrow x=\left\{x\inℕ|x=k^3;k\inℕ\right\}\)

Bình luận (0)
DN
Xem chi tiết
HT
Xem chi tiết
LN
25 tháng 2 2024 lúc 11:59

ccl

Bình luận (0)
LH
Xem chi tiết
AH
2 tháng 10 2019 lúc 23:23

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

Bình luận (0)
AH
17 tháng 9 2019 lúc 13:59

Lời giải:

Ta thấy:

\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)

\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)

Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.

Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$

$\Rightarrow n=2$

Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)

Vậy $n=2$

Bình luận (0)
AH
2 tháng 10 2019 lúc 23:25

Linh Hồ: Bạn lưu ý lần sau gõ đề bài đầy đủ dấu và công thức toán!

Bình luận (0)
CH
Xem chi tiết
HP
8 tháng 2 2016 lúc 20:03

\(A=\frac{2^{2m+2}}{2^{2m+2012}}=\frac{2^{2m}.2^2}{2^{2m}.2^{2012}}=\frac{2^2}{2^{2012}}=\frac{2^2}{2^2.2^{2010}}=\frac{1}{2^{2010}}\)

Bình luận (0)
HP
8 tháng 2 2016 lúc 21:04

\(A=\frac{2^{2m}.2^2}{2^{2m}}+2012=2^2+2012=4+2012=2016\)

Bình luận (0)
NG
Xem chi tiết