Biểu thức A= 1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50 có giá trị a là....
Giá trị biểu thức :
A=(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+3+...+99)+(1/50) là
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức: A= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+..........+1/(1+2+3+.......+99)+1/50
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
giá trị biểu thức A=1/1+2+1/1+2+3+...+1/1+2+3+..+99 +1/50 là ?
Giá trị của biểu thức: A= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+99)+1/50
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức:
A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+...+99 +1/50
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị biểu thức 1/1+2 + 1/1+2+3 + 1/1+2+3+4 +...+ 1/1+2+3+...+99 + 1/50 là
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức:1/(1+2)+1/(1+2+3)+1/(1+2+3+4)......+1/(1+2+3+...+99)+1/50 là
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức:
A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+...+99 +1/50
giup dum like cho
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1