Chứng minh rằng nếu đem 4 số tự nhiên bất kì chia cho 3 thì ít nhất có 2 số cho ta cùng 1 số dư
chứng minh rằng lấy 6 số tư nhiên bất kì chia cho 5 thì có ít nhất 2 số có cùng số dư
Ta có :
0 , 1 , 2 , 3 , 4 , 5 , 6 , ... chia cho 5 có số dư lần lượt là : 0 , 1 , 2 , 3 , 4 , 0 , 1 , 2 , 3 , 4 , ....
Theo Nguyên Lý Dirichlet 6 số tự nhiên bất kì mà chỉ có 4 số dư
=> phải có ít nhất 2 số có cùng số dư ( dpcm )
Chứng tỏ rằng trong 8 số tự nhiên bất kì khi chia 7 ta luôn có ít nhất 2 số có cùng số dư
Có 3 con thỏ nhốt vào 2 chương thì ít nhất có một chuồng nhốt ít nhất 2 con . Chứng tỏ rằng trong 8 số tự nhiên bất kì bao giờ cũng có thể tìm được hai số có cùng số dư khi chia cho 7
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Chứng minh rằng trong 2016 số tự nhiên bất kì luôn tìm được ít nhất 2 số chia cho 2015 có cùng số dư. ANSWER NHANH NHA, SỚM MAII MÌNH KTRA RỒI. GIẢI NHANH, ĐẦY ĐỦ MÌNH "ĐÚNG" CHOA.
Có 2016 = 2015 + 1
Áp dụng nguyên lí Đi rích lê, trong 2016 số tự nhiên bất kì luôn tìm được ít nhất 2 số chia chia cho 2015 có cùng số dư
Chứng minh rằng trong 2016 số tự nhiên bất kì luôn tìm được ít nhất 1 số chia hết cho 2016 hoặc luôn tìm được 2 số chia cho 2016 có cùng số dư. ANSWER NHANH NHÉ, MÌNH CẦN GẤP. GIẢI ĐẦY ĐỦ MÌNH "ĐÚNG" CHO. TKS MẤY BẠN NHÌU
Chứng minh rằng trong 4 số tự nhiên bất kì bao giờ cũng có ít nhất 2 số có hiệu chia hết cho 3
Các số tự nhiên khi chia cho 3 chỉ có thể dư 0,1 hoặc 2.
Áp dụng nguyên lý Đi-rích-lê, ta có:
Trong 4 số tự nhiên bất kỳ bao giờ cũng sẽ có 2 số cùng số dư khi chia cho 3, do đó hiệu của chúng sẽ chia hết cho 3.
Chứng minh rằng trong 6 số tự nhiên bất kì thì có ít nhất 2 số mà hiệu của chúng chia hết cho 5
Giả sử 6 số bất kỳ là a, b, c, d, e, f. Ta thấy rằng khi chia cho 5 dư 0,1,2,3,4. Ta thấy chỉ có 5 số dư vậy khi chọn 6 số bất kỳ sẽ có 2 số có cùng số dư nên hiệu của chúng sẽ kết thúc là số 0. Vậy trong 6 số bất kỳ có ít nhất 2 số mà hiệu của chúng chia hết cho 5.
chứng tỏ trong 8 số tự nhiên bất kì có ít nhất 2 số có cùng số dư khi chia cho 7
Khi chia một số tự nhiên bất kì cho \(7\)ta có thể nhận được \(7\) số dư là: \(0,1,2,3,4,5,6\)do đó trong \(8\)số tự nhiên bất kì có ít nhất hai số có cùng số dư khi chia cho \(7\).