so sánh
a)A=3^1+3^2+3^3+...+3^2016 và B=3^2017-3
b)A=2017.2019 và B =2018^2
Bài 1:
a)IxI=2017
b)Cho A=1+2+2^2+2^3+...+2^2016+2^2017 và B=2^2018.So sánh A và B
Các bạn giúp mik nhé.Cảm ơn nhiều!!!<3<3<3
\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)
\(b)A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)
\(A=2^{2018}-1\)
...
Rồi còn khúc để bạn so sánh đó
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
So sánh: A = (10^2018 + 3)/(10^2017 + 3) và B = (10^2017 + 3)/(10^2016 + 3)
So sánh A và B biết:
A=2016/2017+2017/2018+2018/2016
B=1/3+1/4+1/5+...+1/17
So sánh \(A=\frac{2^{2018}-3}{2^{2017}-1}\) và \(B=\frac{2^{2017}-3}{2^{2016}-1}\)
Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)
Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)
Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)
\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)
hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))
Vậy \(A>B\)
3, so sánh A và B
biết A=2018^2-2016^2
B=2019^2-2017^2
A = 2018^2 - 2016^2
A = (2018 - 2016)(2018 + 2016)
A = 2.4034
B = 2019^2 - 2017^2
B = (2019 - 2017)(2019 + 2017)
B = 2.4036
=> A < B
ggbgbgkbgbgkbokgbgobgkbkogokbgkobkogbkbgb,mb.gnl'g
câu trả lời ở bên dưới
gf'gbf
fgjfb
b
bk
gkbgobpgbogojbgmkh
gg
g
gg
g
g
g
g
g
g
gg
g
g
g
g
g
g
g
g
gg
g
g
g
g
g
g
fgfbgf
nơgnpgpngpnpgnpgpngpnmgknfbbngmnlkgnlmgngnlmbklfgbpfoigfg[e[gr
bố mày đéo bt
A = 20182 - 20162 = 22
B = 20192 - 20172 = 22
Vì 22 = 22 nên A = B
(sai thì thôi)
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
Bài 1 : Tính nhanh
a) 6/15 + 6/35 + 6/63 + 6/99 + 6/143
b) 3/24 + 3/48 + 3/80 + 3/120 + 3/168
Bài 2 : So sánh các phân số sau
a) 2/3 và 5/6 b) 1/4 và 151515/101010 c) 2017/2016 và 2017/2018 d) 2014/2015 và 2015/2016
Bài 3 : So sánh
B = 1/51 + 1/52 + ..... + 1/99 + 1/100 và 1/2
Giải bài giải đầy đủ giúp mình nhé
1.
a) \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{6}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{6}{2}.\frac{10}{39}\)
\(=\frac{10}{13}\)
b) \(\frac{3}{24}+\frac{3}{48}+\frac{3}{80}+\frac{3}{120}+\frac{3}{168}\)
\(=\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)
\(=\frac{3}{2}\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{12}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)
\(=\frac{3}{2}.\frac{5}{28}\)
\(=\frac{15}{56}\)
\(a.\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
\(a.\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}+\frac{6}{143}\)
\(=\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+\frac{6}{9.11}+\frac{6}{11.13}\)
\(=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=3.\frac{10}{39}\)
\(=\frac{10}{13}\)
1 : So sánh :
A = 2016/2017 + 2017/2018 và B = 2
A =2006/2007 + 2007/2008 +2008/2009 và B =3
19/18 và 2005/2004
A=2016/2017+2017/2018
Do 2016/2017<1,2017/2018<1=> A<2 Hay A<B