Những câu hỏi liên quan
H24
Xem chi tiết
KN
17 tháng 4 2020 lúc 9:01

Đặt \(K\left(x\right)=P\left(x\right)-\left(x+1\right)\)

\(\Rightarrow K\left(2016\right)=K\left(2017\right)=K\left(2018\right)=K\left(2019\right)=0\)

Vì P(x) có hệ số của bậc cao nhất bằng 1 nên K(x) cũng có hệ số của bậc cao nhất bằng 1

Do đó K(x) có dạng \(\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)

Lúc đó \(P\left(x\right)=\left(x-2016\right)\left(x-2017\right)\left(x-2018\right)\left(x-2019\right)\)

\(+\left(x+1\right)\Rightarrow P\left(2020\right)=2045⋮5\)

Vậy P(2020) là một số tự nhiên chia hết cho 5 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
KK
18 tháng 12 2018 lúc 20:17

Ta có 5^2020+5^2019+5^2018 = 5^2018*(5^2+5^1+1)

    =5^2018*31 chia hết cho 31.

Bình luận (0)
KB
18 tháng 12 2018 lúc 20:17

\(5^{2020}+5^{2019}+5^{2018}\)

\(=5^{2018}.25+5^{2018}.5+5^{2018}\)

\(=5^{2018}.\left(25+5+1\right)=5^{2018}.31⋮31\)

Bình luận (0)
DD
18 tháng 12 2018 lúc 20:17

52020 + 52019 + 52018

= 52018 . ( 52 + 5 + 1 )

= 52018 . 31 chia hết cho 31

=> 52020 + 52019 + 52018 chia hết cho 31

( . ) là dấu nhân

hok tốt

Bình luận (0)
LA
Xem chi tiết
TM
16 tháng 7 2019 lúc 10:18

= 5^2017( 1+5-5^2)

=5^2017. (-19) chia hết cho 19

Bình luận (0)
H24
16 tháng 7 2019 lúc 10:20

\(5^{2017}+5^{2018}-5^{2019}=5^{2017}\left(1+5-5^2\right)=5^{2017}\left(-19\right)⋮19\)

Bình luận (0)
DA
16 tháng 7 2019 lúc 10:23

52017 + 52018 + 52019

= 52017 . ( 1 + 5 - 52 )

= 52017 . ( -19) \(⋮\)19

=> 52017 + 52018 - 52019 \(⋮\)19

Bình luận (0)
H24
Xem chi tiết
PH
25 tháng 1 2023 lúc 23:13

A=7 mu 2020 mu 2019-3 mu 2016 mu 2015 :5 chung to A la so chan

Bình luận (0)
NM
Xem chi tiết
NT
19 tháng 8 2017 lúc 20:04

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

Bình luận (0)
PT
19 tháng 8 2017 lúc 20:05

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)

Bình luận (0)
TL
15 tháng 4 2023 lúc 6:42

a, Ta có: 4≡1(mod3)4≡1(���3)

⇒42018≡1(mod3)⇒42018≡1(���3)

⇒42018−1⋮3⇒42018−1⋮3

b, Ta có: 5≡1(mod4)5≡1(���4)

⇒52019≡1(mod4)⇒52019≡1(���4)

⇒52019−1⋮4⇒52019−1⋮4

c, 4≡−1(mod5)4≡−1(���5)

⇒42019≡−1(mod5)⇒42019≡−1(���5)

⇒42019+1⋮5⇒42019+1⋮5

d, 5≡−1(mod6)5≡−1(���6)

⇒52017≡−1(mod6)⇒52017≡−1(���6)

⇒52017+1⋮6

Bình luận (0)
NT
Xem chi tiết
H24
31 tháng 8 2018 lúc 20:31

tìm chữ số tận cung của tổng trên ra

Bình luận (0)
HH
Xem chi tiết
NA
11 tháng 1 2020 lúc 21:40

\(A=2^{2015}+2^{2016}+2^{2017}+2^{2018}+2^{2019}+2^{2020}.\)

\(=2^{2014}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)

\(=126.2^{2014}\)

\(=42.3.2^{2014}⋮42\)

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
WS
25 tháng 8 2023 lúc 9:47

\(A=\dfrac{7^{2020^{2019}}-3^{2016^{2015}}}{5}\)

Xét \(X=2020^{2019}\) và \(Y=2016^{2015}\). Khi đó \(A=\dfrac{7^X-3^Y}{5}\).

Vì cơ số của X tận cùng bằng 0 nên 0.0.0...0 luôn tận cùng bằng 0. Suy ra chữ số tận cùng của X là 0.

Ngoài ra, 20202019 sẽ có 2019 chữ số 0 ở sau cùng, suy ra hai chữ số tận cùng của X là những chữ số 0. Suy ra X chia hết cho 4.

Vì cơ số của Y tận cùng bằng 6 nên 6.6.6...6 luôn tận cùng bằng 6. Suy ra chữ số tận cùng của Y là 6.

Dễ dàng nhận thấy rằng 2016 chia hết cho 4, suy ra Y cũng chia hết cho 4 (y ϵ N*).

Do đó \(A=\dfrac{7^X-3^Y}{5}=\dfrac{7^{\overline{...0}}-3^{\overline{...6}}}{5}=\dfrac{7^{4x}-3^{4y}}{5}\)

Ta lập bảng

n 1 2 3 4 ...
Chữ số tận cùng của 7n 7 9 3 1 ...
Chữ số tận cùng của 3n 3 9 7 1 ...

Dãy trên sẽ lặp lại với chu kì là 4 số hạng. Khi đó chữ số tận cùng của 74n; 34n lần lượt giống chữ số tận cùng của 7n; 3n.

Suy ra \(A=\dfrac{\overline{...1}-\overline{...1}}{5}=\dfrac{\overline{...0}}{5}\).

Dễ nhận thấy rằng A chia hết cho 5A chia hết cho 10. Mà 10 = 5.2 nên 5A cũng chia hết cho 2. Lại có 5 không chia hết cho 2 nên chỉ có trường hợp A chia hết cho 2 (đpcm)

Bình luận (0)
VP
24 tháng 8 2023 lúc 20:57

Kiểm tra lại đề nhé bạn.

Bình luận (0)
HD
30 tháng 8 2023 lúc 21:01

cm ơn

 

Bình luận (0)
BN
Xem chi tiết
NK
6 tháng 4 2023 lúc 19:26

`a,`

`5/6=1-1/6`

`7/8=1-1/8`

Mà `1/6>1/8 -> 5/6<7/8`

`b,`

`9/5=(9 \times 2)/(5 \times 2)=18/10`

`3/2=(3 \times 5)/(2 \times 5)=15/10`

`18/10 > 15/10 -> 9/5 > 3/2`

`c,`

`2017/2018 = 1-1/2018`

`2019/2020=1-1/2020`

`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`

`d,`

`2018/2017 = 1+1/2017`

`2020/2019 = 1+1/2019`

`1/2017 > 1/2019 -> 2018/2017>2020/2019`

Bình luận (0)