cho tam giác ABC nhọn có BE, CF là đường cao. . chứng minh rằng góc BEF = góc BCF
Cho tam giác ABC nhọn với đường cao BE và CF . Chứng minh rằng BEF BCF
Cho tam giác ABC có ba đường cao AD, BE, CF cắt nhau tại H. Biết ba góc CAB ^ , ABC ^ , BCA ^ đều là góc nhọn. Gọi M là trung điểm của đoạn AH.
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF.
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DIJ ^ = DFC ^ .
3) Chứng minh EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF
Tứ giác BFEC có B E C ^ = B F C ^ = 90 0
=> tứ giác BFEC nội tiếp đường tròn đường kính BC
Gọi O là tâm đường tròn ngoại tiếp tứ giác BFEC thì O cũng là tâm đường tròn ngoại tiếp tam giác BEF
∆ OBE cân tại O (do OB=OE) => O B E ^ = O E B ^
∆ AEH vuông tại E có EM là trung tuyến ứng với cạnh huyền AH (Vì M là trung điểm AH)
=> ME=AH:2= MH do đó ∆ MHE cân tại M=> M E H ^ = M H E ^ = B H D ^
Mà B H D ^ + O B E ^ = 90 0 ( ∆ HBD vuông tại D)
Nên O E B ^ + M E H ^ = 90 0 Suy ra M E O ^ = 90 0
⇒ E M ⊥ O E tại E thuộc ( O ) => EM là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF
4) Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DIJ ^ = DFC ^
Tứ giác AFDC có A F C ^ = A D C ^ = 90 0 nên tứ giác AFDC nội tiếp đường tròn => B D F ^ = B A C ^
∆ BDF và ∆ BAC có B D F ^ = B A C ^ (cmt); B ^ chung do đó ∆ BDF ~ ∆ BAC(g-g)
Chứng minh tương tự ta có ∆ DEC ~ ∆ ABC(g-g)
Do đó ∆ DBF ~ ∆ DEC ⇒ B D F ^ = E D C ^ ⇒ B D I ^ = I D F ^ = E D J ^ = J D C ^ ⇒ I D J ^ = F D C ^ (1)
Vì ∆ DBF ~ ∆ DEC (cmt); DI là phân giác, DJ là phân giác ⇒ D I D F = D J D C (2)
Từ (1) và (2) suy ra ∆ DIJ ~ ∆ DFC (c-g-c) => DIJ ^ = DFC ^
Cho tam giác ABC nhọn ( AB<AC ) đường cao BE và CF cắt nhau tại H
a) Chứng minh : tam giác ABE đồng dạng với tam giác ACF
b) Chứng minh : tam giác AEF đồng dạng với tam giác ABC và góc BEF = góc BCF
c) Gọi K là trung điểm của HC. Chứng minh : tam giác FAC đồng dạng với tam giác FHB và FA.FB=FK^2-EK^2
P/s : mình không biết CM FA.FB=FK^2-EK^2
Mong các bạn giúp mình. Cảm ơn trước nha
Bài 1: Cho tam giác ABC nhọn có các đg cao AD,BE,CF cắt nhau tại h .
a) Cm: AF.AB=AC.AE
b) Cm: Tam giác AEF đồng dạng vs tam giác ABC
c) Cm : Góc BEF=BCF
d) EH là p.g DEF (= 2 cách )
e) Cm: BH.BE+CH.CF=BC^2
f) Cho AE= 3cm , AB=6cm , AH=5cm . CM: tam giác ABC=4 tam giác AEF ; Tính diện tích tam giác BEC ; kẻ HM//AC Tính HM
g) CM: AF/FB . BD/DC . CE/EA = 1
cần f vs g nha <3
Cho tam giác nhọn ABC , các đường cao BE và CF a, chứng minh tam giác AEB đồng dạng với tam giác AFC. Từ đó suy ra AF. AB=AE.AC b, chứng minh góc AEF=ABC c, nếu tam giác ABC có có góc A=60°. Chứng minh rằng SABC=4SAEF
cho tam giác nhọn ABC các đường cao AD , BE , CF . Chứng minh rằng :
a , góc AEF = góc ABC
b , EB là phân giác của góc FED .
Cho tam giác ABC có 3 góc nhọn, hai đường cao BE,CF cắt nhau tại H. Chứng minh rằng AH vuông góc với BC
xét tam giác ABC có
CF vuông gọc với AB
BE vuông góc với AC
suy ra AH vuông góc với BC ( đường cao thứ ba )
cho tam giác ABC có 3 góc nhọn .Các đường cao AD,BE,CF đồng quy tại H.Gọi M và N lần lượt là hinh chieu của B và C trên đường thẳng EF. chứng minh rằng
a)H cách đều ba cạnh của tam giác DEF
b)S tam giác MBE + S tam giác NCE =S tam giác BCF
Bài 7: Cho ABC nhọn có các đường cao AD,BE,CF cắt nhau tại H.
a. Chứng minh AB.AF=AC.AE
b. Chứng minh AEF ABC.
c. Chứng minh Góc BEF=BCF
d. Chứng minh BH.BE+CH.CF=BC2.
e. Chứng minh EH là phân giác
g. Chứng minh : AF/FB.DB/DC.CE/EA=1