Tìm các nghiệm nguyên dương của phương trình:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
Tìm nghiệm nguyên dương của phương trình:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{7}\)
tìm nghiệm nguyên dương của phương trình
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}+\frac{1}{xy}\)
Ai giải giúp đi
nhân 2 vế với 3xy =>3y+3x=xy+3=>\(\left\{y-3\right\}\left\{x-3\right\}=12\)
=>y-3;x-3 thuộc ước 12={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Nhân cả hai vế với 3xy (Nhận được vì x , y nguyên dương) ta có:
\(3y+3x=xy+3\Leftrightarrow3y-xy+3x-3=0\)
\(\Leftrightarrow y\left(3-x\right)+3x-9+6=0\Leftrightarrow y\left(3-x\right)-3\left(3-x\right)=-6\)
\(\Leftrightarrow\left(y-3\right)\left(x-3\right)=6\)
Từ đó ta tìm được x ,y.
Chúc em học tốt :)
2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp:
\(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm)
\(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\) \(\left(y-2\right)\left(z-2\right)=4\)
Mà \(0\le y-2\le z-2\)và \(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
\(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)
\(-\) Nếu \(x=3\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\) + Nếu \(y=3\) thì \(z=3\)
+ Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
\(\Rightarrow\) phương trình vô nghiệm
\(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\) \(\Rightarrow\) phương trình vô nghiệm
Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)
Không mất tính tổng quát ta giả sử
\(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)
\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)
\(\Rightarrow z\le3\)
\(\Rightarrow z=1;2;3\)
*Với z = 1 thì
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)
*Với z = 2 thì
\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Rightarrow y\le4\)
\(\Rightarrow y=1;2;3;4\)
+Với y = 1
\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)
+Với y = 2 thì
\(\Rightarrow\frac{1}{x}=0\)(loại)
+Với y = 3 thì
\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Rightarrow x=6\)
+Với y = 4 thì
\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Rightarrow x=4\)
*Với z = 3 thì
\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)
\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y=1;2;3\)
+ Với y = 1 thì
\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)
+ Với y = 2 thì
\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(\Rightarrow x=6\)
+ Với y = 3 thì
\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Tới đây thì bạn tự kết luận nhé
tìm nghiệm nguyên dương của phương trình \(\frac{4}{x}+\frac{2}{y}=1\)
\(\frac{4y+2x}{xy}=1\) <=> \(4y+2x=xy\)
<=> \(4y-xy+2xy-8=-8\)
<=> \(y\left(4-x\right)-2\left(4-x\right)=-8\)
<=> \(\left(y-2\right)\left(4-x\right)=-8\)
Bạn giải tiếp nha !
1. Giải phương trình: \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)=1
2. Tìm nghiệm nguyên dương của: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{6xy}=\frac{1}{6}\)
2.
Nhân hai vế của phương trình với 6xy:
6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử x⩾y⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
{−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số: (43;7),(7;43)
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x}\)+ \(\frac{1}{y}\)= z
Số nào + lại chả được 1 số thuộc Z nhỉ
Đúng 100%
Đúng 100%
Đúng 100%
Bằng z chứ không phải thuộc z bạn ơi ;-;
a) Tìm tất cả nghiệm nguyên dương của bất phương trình : \(11x-7< 8x+7\)
b) Tìm tất cả nghiệm nguyên âm của bất phương trình \(\frac{x^2+2x+8}{2}-\frac{x^2-x+1}{6}>\frac{x^2-x+1}{3}-\frac{x+1}{4}\)
c)Tìm nghiệm nguyên nhỏ nhất của bất phương trình : \(2\left(3-x\right)-1,5\left(x-4\right)< 3-x\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
c)2(3-x)-1,5(x-4)<3-x
<--->6-2x-1,5x+6<3-x
<--->6+6-3<2x+1,5x-x
<--->9<2,5x
<--->3,6<x mà x la so nguyen nhỏ nhất
--->x=4
Có một bài khá hay gửi cho các anh thưởng thức:
Tìm nghiệm nguyên dương của phương trình:
\(\frac{x}{y+2}=\frac{y}{x+1}\)
Gợi ý:nguyên lý kẹp
em mới có lớp 7 anh ạ
Lớp 7 cũng làm dc mak!Chẳng qua dùng mấy cái hằng đẳng thức
mấy cái đó bọn em chưa hok