Những câu hỏi liên quan
NM
Xem chi tiết
LT
18 tháng 8 2017 lúc 21:39

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\).... \(+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{2^2}\). ( \(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{n^2}\)) < \(\frac{1}{2^2}\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).\left(n\right)}\)) = \(\frac{1}{2^2}\)\(1-\frac{1}{n}\)) < \(\frac{1}{2^2}\).1 = \(\frac{1}{4}\)

\(\Rightarrow\)\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{4}\)

Bình luận (0)
H24
3 tháng 4 2020 lúc 20:39

mình ko hiểu lắm

Bình luận (0)
 Khách vãng lai đã xóa
ES
Xem chi tiết
RM
Xem chi tiết
LH
8 tháng 7 2016 lúc 12:07

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)

\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)

Bình luận (0)
H24
Xem chi tiết
PQ
26 tháng 2 2018 lúc 19:25

Ta có : 

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{4}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{4}\left(1-\frac{1}{n}\right)\)

\(A< \frac{1}{4}-\frac{1}{4n}\)

Lại có \(n>0\) nên \(\frac{1}{4n}>0\)

\(\Rightarrow\)\(\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

Bình luận (0)
LD
Xem chi tiết
SN
19 tháng 5 2015 lúc 15:32

\(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{n^2}

Bình luận (0)
TL
2 tháng 4 2017 lúc 12:10

trên là 2n ở dưới lại là n

Bình luận (0)
DK
Xem chi tiết
H24
8 tháng 4 2017 lúc 20:38

bài này tui bít làm nhưng dài lắm

Bình luận (0)
DK
8 tháng 4 2017 lúc 20:43

Cố gắng làm hộ mình với !

Bình luận (0)
VM
8 tháng 4 2017 lúc 21:13

=>\(\frac{1}{2^2}\)x (\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{n^2}\))

Đặt A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{n^2}\)

Ta có:\(\frac{1}{2^2}\)<\(\frac{1}{1\cdot2}\)

         \(\frac{1}{3^2}\)<\(\frac{1}{2\cdot3}\)

.........\(\frac{1}{n^2}\)<\(\frac{1}{\left(n-1\right)\cdot n}\)

=>\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{n^2}\)<\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{\left(n-1\right)\cdot n}\)

=>A<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{n-1}\)--\(\frac{1}{n}\)
=>\(\frac{1}{2^2}\)*A<\(\frac{1}{2^2}\)(1--\(\frac{1}{n}\))

=>\(\frac{1}{2^2}\)*A<\(\frac{1}{4}\)(1--\(\frac{1}{n}\))

=>\(\frac{1}{2^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{4}\)--\(\frac{1}{4n}\)<\(\frac{1}{4}\)

=>\(\frac{1}{2^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{4}\)

Bình luận (0)
CT
Xem chi tiết
NT
Xem chi tiết
WR
8 tháng 6 2015 lúc 7:28

đặt A=1/2^2+1/4^2+1/6^2+.....+1/(2n)^2

ta có :

A=1/2^2 +1/2^2(1/2^2+1/3^2+1/4^2+.....+1/n^2)

A<1/2^2+1/2^2(1/1.2+1/2.3+...+1/(n-1)n)

=1/2^2+1/2^2(1-1/2+1/2-1/3+....+1/(n-1)-1/n)

=1/2^2+1/2^2(1-1/n)

<1/2^2+1/2^2.1=1/2<3/4

vậy A<3/4

 

 

 

Bình luận (0)
H24
8 tháng 6 2015 lúc 7:33

mình đồng ý với bạn witch roses

Bình luận (0)
MT
8 tháng 6 2015 lúc 7:36

ta có 

\(\frac{1}{2^2}

Bình luận (0)
LC
Xem chi tiết
LH
22 tháng 3 2015 lúc 11:29

Ta có:

\(M=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.n^2}\)

\(=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{n^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Coi \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}\)

Vì: \(\frac{1}{2.2}

Bình luận (0)
ES
9 tháng 5 2017 lúc 8:57

kho qua minh moi lop 5

Bình luận (0)
PP
23 tháng 3 2018 lúc 6:23

What? lớp 5 mà học cả số mũ?? thời nay bọn trẻ con học trâu thật!

Bình luận (0)