Những câu hỏi liên quan
ND
Xem chi tiết
HS
29 tháng 2 2020 lúc 19:52

Ta có : \(x=\frac{y}{2}=\frac{2z}{3}\) => \(\frac{x}{1}=\frac{y}{2}=\frac{z}{\frac{3}{2}}\)=> \(\frac{x}{1}=\frac{2y}{4}=\frac{5z}{\frac{15}{2}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{1}=\frac{2y}{4}=\frac{5z}{\frac{15}{2}}=\frac{x-2y-5z}{-\frac{21}{2}}=\frac{210}{-\frac{21}{2}}=-20\)

=> \(\hept{\begin{cases}x=-20\\\frac{y}{2}=-20\\\frac{2z}{3}=-20\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-40\\z=-30\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
29 tháng 2 2020 lúc 20:18

Ta có: \(x=\frac{y}{2}=\frac{2z}{3}\)và x-2y-5z=210

=>\(\frac{x}{2}=\frac{y}{4}=\frac{2z}{6}\)

=>\(\frac{x}{2}=\frac{2y}{8}=\frac{5z}{15}\)

=>\(\frac{x-2y-5z}{2-8-15}=\frac{210}{-21}=-10\)

=>\(\frac{x}{2}=-10\)=>x= -10*2=-20

\(\frac{2y}{8}\)=-10=>2y=-10*8=-80=>y=-80/2=-40

\(\frac{5z}{15}\)=-10=>5z=-10*15=-150=>z=-150/5=-30

Bình luận (0)
 Khách vãng lai đã xóa
HH
29 tháng 2 2020 lúc 22:36

Ta có : \(x=\frac{y}{2}=\frac{2z}{3}\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{x}{1}=\frac{2y}{4}=\frac{5z}{\frac{15}{2}}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có ;

\(\frac{x}{1}=\frac{2y}{4}=\frac{5z}{\frac{15}{2}}=\frac{x-2y-5z}{-\frac{21}{2}}=\frac{210}{-\frac{21}{2}}=-20\)

\(\Rightarrow\hept{\begin{cases}x=-20\\\frac{y}{2}=-20\end{cases}\Rightarrow\hept{\begin{cases}x=-20\\y=-40\\z=-30\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
VT
12 tháng 2 2018 lúc 13:54

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

Bình luận (0)
VT
12 tháng 2 2018 lúc 14:06

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

Bình luận (0)
NB
1 tháng 3 2018 lúc 22:40

d) Đặt \(\frac{x}{2}=k\Rightarrow x=2k\)\(\frac{y}{3}=k\Rightarrow y=3k\)\(\frac{z}{5}=k\Rightarrow z=5k\)

Thay x=2k, y=3k, z=5k vào xyz=810 ta được:

\(2k.3k.5k=810\)

\(30k^3=810\)

\(k^3=\frac{810}{30}=27\)

\(\Rightarrow k=3\)

Do đó: x = 2k \(\Rightarrow\)x = 2.3=6

             y = 3k\(\Rightarrow\)y = 3.3=9

             z = 5k \(\Rightarrow\)z = 5.3=15

Vậy x=6; y=9; z=15

Bình luận (0)
H24
Xem chi tiết
EC
6 tháng 10 2019 lúc 9:32

a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy ...

Bình luận (0)
H24

ê nhỏ tự túc đê

Bình luận (0)
H24
7 tháng 10 2019 lúc 12:47

BÙI THỊ YẾN NHI m ns ai là nhỏ hả... đến lớp xem t xử m thế nào

Bình luận (0)
LH
Xem chi tiết
PB
29 tháng 10 2017 lúc 21:14

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

Bình luận (0)
PC
29 tháng 10 2017 lúc 21:17

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

Bình luận (0)
NV
Xem chi tiết
GW
31 tháng 8 2021 lúc 19:21

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

Bình luận (0)
 Khách vãng lai đã xóa
74
25 tháng 4 2024 lúc 13:57

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

Bình luận (0)
74
25 tháng 4 2024 lúc 13:57

Để giải các bài toán này:

1a) \( \frac{x}{2} = \frac{y}{5} \) và \( x + y = 21 \)

Từ phương trình thứ nhất, ta có \( x = \frac{2y}{5} \). Thay vào phương trình thứ hai:
\[ \frac{2y}{5} + y = 21 \]
\[ \frac{7y}{5} = 21 \]
\[ 7y = 105 \]
\[ y = 15 \]

Thay \( y = 15 \) vào \( x + y = 21 \):
\[ x + 15 = 21 \]
\[ x = 6 \]

Vậy, \( x = 6 \).

1b) \( \frac{x^2}{2^2} = \frac{y^2}{2^2} \) và \( x \cdot y = 54 \)

Từ phương trình thứ nhất:
\[ x^2 = y^2 \]

Đặt \( x = y \) ta có:
\[ x^2 = 54 \]
\[ x = \sqrt{54} \]
\[ x = 3\sqrt{6} \]

Vậy, \( x = 3\sqrt{6} \).

1c) \( \frac{x}{7} = \frac{y}{5} \) và \( y - x = 12 \)

Từ phương trình thứ nhất, ta có \( x = \frac{7y}{5} \). Thay vào phương trình thứ hai:
\[ y - \frac{7y}{5} = 12 \]
\[ \frac{5y}{5} - \frac{7y}{5} = 12 \]
\[ \frac{-2y}{5} = 12 \]
\[ -2y = 60 \]
\[ y = -30 \]

Thay \( y = -30 \) vào \( y - x = 12 \):
\[ -30 - x = 12 \]
\[ x = -42 \]

Vậy, \( x = -42 \).

2a) \( \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \) và \( 5x + y - 2z = 28 \)

Đặt \( k = \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \), ta có:
\[ x = 10k, \quad y = 6k, \quad z = 21k \]

Thay vào phương trình \( 5x + y - 2z = 28 \):
\[ 5(10k) + 6k - 2(21k) = 28 \]
\[ 50k + 6k - 42k = 28 \]
\[ 14k = 28 \]
\[ k = 2 \]

\[ x = 10(2) = 20, \quad y = 6(2) = 12, \quad z = 21(2) = 42 \]

Vậy, \( x = 20, y = 12, z = 42 \).

2b) \( \frac{x}{3} = \frac{y}{4} \), \( \frac{y}{5} = \frac{z}{7} \), và \( 2x + 3y - z = 124 \)

Đặt \( k = \frac{x}{3} = \frac{y}{4} \), ta có:
\[ x = 3k, \quad y = 4k \]

Thay vào \( \frac{y}{5} = \frac{z}{7} \):
\[ \frac{4k}{5} = \frac{z}{7} \]
\[ z = \frac{28}{5}k \]

Thay \( x, y, z \) vào \( 2x + 3y - z = 124 \):
\[ 2(3k) + 3(4k) - \frac{28}{5}k = 124 \]
\[ 6k + 12k - \frac{28}{5}k = 124 \]
\[ \frac{30k + 60k - 28k}{5} = 124 \]
\[ \frac{62k}{5} = 124 \]
\[ 62k = 620 \]
\[ k = 10 \]

\[ x = 3(10) = 30, \quad y = 4(10) = 40, \quad z = \frac{28}{5}(10) = 56 \]

Vậy, \( x = 30, y = 40, z = 56 \).

2c) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)

Từ \( 3x = 2y \) và \( 7y = 5z \):
\[ x = \frac{2}{3}y, \quad z = \frac{7}{5}y \]

Thay vào \( x - y + z = 32 \):
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{10y - 15y + 21y}{15} = 32 \]
\[ \frac{16y}{15} = 32 \]
\[ y = 30 \]

\[ x = \frac{2}{3}(30) = 20, \quad z = \frac{7}{5}(30) = 42 \]

Vậy, \( x = 20, y = 30, z = 42 \).

2d) \( 2x = 3x = 5z \) và \( x + y - z = 95 \)

Từ \( 2x = 3x = 5z \), ta có:
\[ x = \frac{2}{3}x, \quad x = \frac{5}{3}z \]

Vậy, \( x = \frac{5}{3}z \).

Thay vào \( x + y - z = 95 \):
\[ \frac{5}{3}z + y - z = 95 \]
\[ \frac{2}{3}z + y = 95 \]
\[ y = 95 - \frac{2}{3}z \]

Thay \( x \) và \( y \) vào \( 2x = 3x = 5z \):
\[ 2(\frac{5}{3}z) = 3(\frac{5}{3}z) = 5z \]
\[ \frac{10}{3}z = 5z \]
\[ \frac{10}{3} = 5 \]
\[ \text{False} \]

Không có giải pháp thỏ

Bình luận (0)
ML
Xem chi tiết
MT
23 tháng 6 2015 lúc 13:43

a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42

áp dụng tính chất của dãy tỉ số = nhau ta có:

5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2

suy ra: 5x/50=2=>5x=100=>x=20

y/6=2=>y=12

2z/42=2=>84=>z=42

b)3x = 2y ; 7y = 5z

=>x/2=y/3;y/5=z/7

=>x/10=y/15;y/15=z/21

=>x/10=y/15=z/21

áp dụng tính chất của dãy tỉ số = nhau ta có:

x/10=y/15=z/21=x-y+z/10-15+21=32/16=2

suy ra :

x/10=2=>x=20

y/15=2=>y=30

z/21=2=>z=42

c) x/3 = y/4 ; y/3 = z/5

=>x/9=y/12;y/12=z/20

=>x/9=y/12=z/20

=>2x/18=3y/36=z/20

áp dụng tính chất của dãy tỉ số = nhau ta có:

2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3

suy ra 

2x/18=3=>2x=54=>x=27

3y/36=3=>3y=108=>y=36

z/20=3=>z=60

d)2x/3 = 3y/4 = 4z/5

=>12x/18=12y/16=12z/15

áp dụng tính chất của dãy tỉ số = nhau ta có:

12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12

suy ra 

12x/18=12=>12x=216=>x=18

12y/16=12=>12y=192=>y=16

12z/15=12=>12z=180=>z=15

d)đặt x-1/2=y-2/3=z-3/4=k

=>x=2k+1

y=3k+2

z=4k+3

thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:

2(2k+1)+3(3k+2)-(4k+3)=50

4k+2+9k+6-4k-3=50

9k+5=50

9k=45

k=5

=>x=2k+1=2.5+1=11

y=3k+2=3.5+2=17

z=4k+3=4.5+3=23

Bình luận (0)
AM
23 tháng 6 2015 lúc 13:35

đặt x-1/2=y-2/3=z-3/4=k

=> x=2K+1, y=3k+2, z=4k+3

=>2x+3y-z=4K+2+9k+6-4k-3=9K+5=50

=>K=5

=>x=11, y=17, z=23

chúc học tốt nhé!

Bình luận (0)
H24
24 tháng 9 2016 lúc 15:15

bạn làm đúng rồi mình cũng giống bạn trieu dang

Bình luận (0)
ML
Xem chi tiết
TN
22 tháng 6 2015 lúc 13:42

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

Bình luận (0)
MD
Xem chi tiết
TL
13 tháng 1 2018 lúc 21:07

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

Bình luận (0)
KN
12 tháng 7 2020 lúc 10:15

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
HH
Xem chi tiết
NH
14 tháng 3 2024 lúc 23:11

Bình luận (0)