tìm x
\(\frac{-z}{x}=\frac{-x}{\frac{8}{25}}\)
Tìm các số x,y,z biết rằng
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(\frac{10}{x-5}=\frac{6}{y-9}=\frac{14}{z-21}\) và xyz= 6720
\(\frac{2x-3}{2x-5}=\frac{2x+5}{2x+8}\)
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\) và \(2x^3-1=15\)
Tìm x;y thuộc N :
25 - y2=8(x - 2009)2
Tìm x thuộc Z biết:
a)\(2x+\frac{1}{7}=\frac{1}{y}\)
b)\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
c)\(\frac{x}{8}-\frac{1}{y}=\frac{1}{4}\)
Tìm \(x,y,z:\)
\(1)\) \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\) và \(x+y-10z=102\)
\(2)\) \(\frac{x}{y}=\frac{8}{11};\frac{y}{z}=\frac{11}{7}\)và \(x+y-10z=-102\)
\(3)\)\(\frac{x}{y}=\frac{9}{25};\frac{y}{z}=\frac{10}{13}\)và \(x+3y+2z=6\)
\(4)\)\(\frac{x}{y}=\frac{9}{25};\frac{y}{z}=\frac{10}{13}\)và \(x-3y+2z=6\)
Cho \(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\)và\(\frac{9-x}{7}+\frac{11-x}{9}=2\)
Tìm x,y,z
Cho \(A=\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\) và \(\frac{9-x}{7}+\frac{11-x}{9}=2\)
tìm x+y+z
Tìm a sao cho : \(\frac{a}{x+y}=\frac{5}{x+z};\frac{25}{\left(x+z\right)^2}=\frac{16}{\left(z-y\right)\left(2x+y+z\right)}\)
Cho \(\frac{x+16}{9}\)=\(\frac{y-25}{16}\)=\(\frac{z+9}{25}\)và \(\frac{9-x}{7}\)+\(\frac{11-x}{9}\)= 2.Tìm x+y+z.
Rút gọn biểu thức:
\(A=\left|\frac{\left|y-x\right|}{\left|xy\right|}\right|+\left|\frac{y+x}{xy}-\frac{2}{z}\right|+\frac{\left|y-x\right|}{\left|xy\right|}+\frac{y+x}{xy}+\frac{2}{z}\)
với \(x>5\); \(y=\frac{x^2-25}{x+\frac{10x+25}{x}}\); \(z=\frac{x^2-25}{x+\frac{15x+25}{x-5}}\)
a,Tìm x,y,z biết \(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{11},x+y-z=44\)
b,Tìm x,y biết 3x=8y và x-2y=4
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt