tìm GTNN của f(x,y)= 3(x^2/y^2+y^2/x^2)-8(x/y+y/x)+10 (x,y khác 0)
help me pls
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy
Tìm gtnn của P=x^2/y^2+y^2/x^2-3(x/y+y/x)+5 với x,y khác 0
x,y dương chứ nhỉ :))
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=2\)
=> \(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge2-3\cdot2+5=1\)
Đẳng thức xảy ra khi x = y
Vậy MinP = 1
1 tìm GTLN,GTNN của:
y=x+1/x^2+x+1
2 tìm GTNN của:
f(x,y)=3(x^2/y^2) - 8(x/y + y/x) + 10
giúp mik với
tim GTNN của biểu thức: M=(x-2020)^4+(x+y+1)^2+5
Help me pls
Trả lời:
\(M=\left(x-2020\right)^4+\left(x+y+1\right)^2+5\)
Ta có: \(\left(x-2020\right)^4\ge0\forall x;\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-2020\right)^4+\left(x+y+1\right)^2+5\ge5\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2020=0\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2020\\y=-2021\end{cases}}}\)
Vậy GTNN của M = 5 khi x = 2020; y = - 2021
cho x,y,z là các số thực dương .Tìm GTNN của
P=(x^4/(y+z)-x^3/2)+(y^4/(x+z)-y^3/2)+(z^4/(x+y)-x^3/2)+25/9
Ai giúp mk vs mk đang cần gấp!!! HELP ME!!!
bài 1 đồ thị của hàm số y = f(x)=-0,5x bằng đồ thị Hãy tìm:
a) f(2);f(-2); f(4) ; f(0)
b) giá trị của x y = -1,y=0,y=2,5
c) các giá trị của x khi y dương khi y âm
help me
a, f(2)=-0,5. 2=-1
f(-2)=-0,5.-2=1
f(4)=-0,5.4=-2
f(0)=-0,5.0=0
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Cho x, y là các số thực khác 0. Tìm GTNN của biểu thức:
A = 3(\(\frac{x^2}{y^2}\)+ \(\frac{y^2}{x^2}\)) - 8(\(\frac{x}{y}\)+ \(\frac{y}{x}\))
áp dụng AM-GM :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{x^2y^2}}=2\)
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{yx}}=2\)
do đó \(A\ge3.2-2.8=-10\)thì \(A_{MIN}=-10\)DẤU = sảy ra khi x= y
Hoàng Thanh Tuấn số thực khác 0 khôg có nghĩa là số không âm nên... ko áp dụng dc đâu
cho x,y >0 thõa mãn: x^3+y^3+6xy=<8 tìm GTNN của biểu thức A= x+2y+ 2/x+3/y