tìm GTNN của bt sau B = (x^2 + 2x + 3)(x^2 + 2x + 4) + 3
Tìm GTNN của BT sau: \(x^4+2x^3+9x^2+8x+27\)
Ta có:
\(A=x^4+2x^3+9x^2+8x+27\)
\(\Leftrightarrow A=x^4+x^2+16+2x^3+8x+8x^2+11\)
\(\Leftrightarrow A=\left(x^2+x+4\right)^2+11\)
\(\Leftrightarrow A=\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)^2+11\)
\(\Leftrightarrow A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]^2+11\)
\(\ge\left(\dfrac{15}{4}\right)^2+11=\dfrac{401}{16}\)
Vậy \(A_{min}=\dfrac{401}{16}\), đạt được khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Tìm GTNN của các BT sau :
A = | 2x + 8 | + 6
B = | 2y+ 4 | + 7 + | 4x + 3 |
C = x2 + 2x + 5
\(A=\left|2x+8\right|+6\ge6\Rightarrow Min_A=6\)
\(B=\left|2y+4\right|+7+\left|4x+3\right|\ge7\Rightarrow Min_B=7\)
\(C=x^2+2x+5=\left(x+1\right)^2+4\ge4\Rightarrow Min_C=4\)
a) Vì |2x+8| lớn hơn hoặc bằng 0 nên GTNN của A=6
b)Vì |2y+4|,|4x+3| lớn hơn hoặc bằng 0 nên GTNN của B=7
c)Ta có: x^2+2x+5=x.(x+2)+5
Nếu x<-2 thì x.(x+2)>0
Nếu x>2 thì x.(x+2)>0
nên GTNN của C=5
TÌM GTNN CỦA CÁC BT SAU ;
a, B= (x-3)^2 + (x-5)^2
b, C=(2x-1)^2 - 3l2x-1l +2
c, D=(4x+1).(4+x) / x với x>0
1.Tìm GTNN của bt
a.x^2-2x-1
b.4x^2+4x-5
2.Tìm GTLN của bt:
a.2x-x^2-4
b.-x^2-4
BÀI 1:
\(a,x^2-2x-1\)
\(=x^2-2x+1-2\)
\(=\left(x-1\right)^2-2\)
Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy: GTNN của bt là -2 tại x=1
\(b,4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\)
Vì: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
VậyGTNN của bt là -6 tại x=-1/2
BÀI 2:
\(a,2x-x^2-4\)
\(=-x^2+2x-4\)
\(=-x^2+2x-1-3\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì: \(-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy GTLN của bt là -3 tại x=1
b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn
1)
a) Đặt \(A=x^2-2x+1\)
\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)
\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(A_{min}=2\Leftrightarrow x=1\)
Câu b tương tự
2)
a) Đặt \(B=2x-x^2-4\)
\(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy\(B_{max}=-3\Leftrightarrow x=1\)
b) Đặt \(C=-x^2-4\)
Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)
\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy \(C_{max}=-4\Leftrightarrow x=0\)
thôi bn tham khảo bài của bn kudo shinichi đi, bn ấy lm đúng rồi
Tìm GTNN của bt A=|x-2|+|2x-3|+|3x-4|
A=MIN=0 vì lx-2l=0 hoặc>0
l2x-3l=0 hoặc >0
l3x-4l=0 hoặc >0
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Tìm GTNN của biểu thức :
\(x^2+2x+4\)
Đặt A = \(x^2+2x+4\)
\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)
\(\Leftrightarrow A=\left(x+1\right)^2+3\)
Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)
Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)
Hay A\(\ge3\) với mọi x
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Nên : \(A_{min}=3khix=-1\)
TÌM GTNN của bt
a) \(2x^2-4xy+4y^2+2x+5\)
b) \(x\left(1-x\right)\left(x-3\right)\left(4-x\right)\)
a)2x^2-4xy+4y^2+2x+5=x^2-4xy+4y^2+x^2+2x+1+4=(x-2y)^2+(x+1)^2+4>=4(dấu = tự tìm nhé)
b)x(1-x)(x-3)(4-x)=x(x-1)(x-3)(x-4)
=(x^2-4x)(x^2-4x+3)
Đặt x^2-4x=t(t>=-4) bt viết lại t(t+3)=t^2+3t>=-9/4
Dấu= xảy ra khi t=-3/2 >>>tìm x
1)chứng minh rằng với n thuộc Z thì biểu thức sau luôn viết dưới dạng tổng của hai số chính phương.A= x^2+2(x+1)^2+3(x+2)^2+4(x+3)^2
2)Cho O = 2^4 +4.Tìm n thuộc N để P là số nguyên tố
3)TÍnh P = (1-1/1+2)*(1-1/1+2+3)*...*(1-1/1+2+...+2019)
4)TÌm GTNN của bt A = √x^2+2x+2 + √y^2-4y+5 ( √ là dấu căn nha , căn là căn hết cả x^2+2x+2 và y^2-4y+5 )
5) TÌm GTLN của bt B = 2x+3y biết x^2+y^2 = 1
GIúp mình với
Cảm ơn