Các bạn giải giúp mình với :
5/2.5 + 5/5.8 + 5/8.11 +.....+ 5/98.101 =
5/2.5 + 5/5.8 + 5/8.11 + ... + 5/ 98.101 = ?
\(\frac{5}{2.5}+\frac{5}{5.8}+......+\frac{5}{98.101}\)
\(=\frac{5}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+........+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)=\frac{5}{3}.\frac{99}{202}\)
\(=\frac{5.33}{202}=\frac{165}{202}\)
tính
S=3/2.5+3/5.8+3/8.11+...+3/98.101
\(S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\)
\(S=\frac{1}{2}-\frac{1}{101}\)
\(S=\frac{99}{202}\)
Bạn cho mình thêm 1/3 ở dòng 2 của bài làm mình nhé
Kết quả ra là : \(\frac{33}{202}\)
A=5/2.5+5/5.8+5/8.11+...+5/47.50
\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{47.50}\)
\(=\frac{5}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{47.50}\right)\)
\(=\frac{5}{3}\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{50-47}{47.50}\right)\)
\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{47}-\frac{1}{50}\right)\)
\(=\frac{5}{3}\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=\frac{4}{5}\)
a)1+1/1.3+1/3.5+...+1/99.101
b)1/2+1/2.5+1/5.8+1/8.11+...+1/98.101
a) đặt
\(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)
b)
đặt
\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)
\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)
Tính:
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)
\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+............+\frac{1}{98}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=\frac{4}{3}.\frac{99}{202}\)
\(=\frac{66}{101}\)
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)
\(\frac{4}{3}A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)
\(\frac{4}{3}A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\)
\(A=\left(\frac{1}{2}-\frac{1}{101}\right).\frac{3}{4}\)
\(A=\frac{99}{202}.\frac{3}{4}=\frac{297}{808}\)
\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)
\(\Rightarrow A=4\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{98.101}\right)\)
\(\Rightarrow A=4\left[\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{98}-\frac{1}{101}\right)\right]\)
\(\Rightarrow A=4\left[\frac{1}{3}\left(\frac{1}{2}-\frac{1}{101}\right)\right]\Rightarrow A=4\left(\frac{1}{3}.\frac{99}{202}\right)\Rightarrow A=4.\frac{33}{202}\)\(\Rightarrow A=\frac{66}{101}\)
M=32 /2.5+32/5.8+32/8.11+...+32/98.101
\(M= \dfrac{3^2}{2.5} +\dfrac{3^2}{5.8} +\dfrac{3^2}{8.11}+...+\dfrac{3^2}{98.101}\)
\(M= \) \( \dfrac{9}{2.5} +\dfrac{9}{5.8} +\dfrac{9}{8.11}+...+\dfrac{9}{98.101}\)
\(M=3(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+ \dfrac{3}{98.101})\)
\(M= 3(\dfrac{1}{2} -\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11})\)
\(M= 3(\dfrac{1}{2}-\dfrac{1}{11})\)
\(M=3(\dfrac{11}{22}- \dfrac{2}{22})\)
\(M=3.\dfrac{9}{22}\)
\(M=\dfrac{27}{22}\)
Tính nhanh
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)
#)Giải :
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)
\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{99}{202}\)
\(\Leftrightarrow A=\frac{33}{202}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)
tính 1/2.5+1/5.8+1/8.11+....+1/92.95+1/95.98
mong các bạn giải gúi mình mình đang gấp
= 1/3.(1/2-1/5)+1/3.(1/5-1/8)+....+1/3.(1/92-1/95)+1/3.(1/95-1/98)
=1/3.(1/2-1/5+1/5-1/8+....+1/92-1/95+1/95-1/98)
=1/3.(1/2-1/98)
=1/3.24/49
=8/49
Phân tích: 1/2.5 = 1/2 - 1/5
1/5.8 = 1/5 - 1/8
1/8.11 = 1/8 - 1/11
...
1/92.95 = 1/92 - 1/95
1/95.98 = 1/95 - 1/98
Ta có: 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98
3 = 3/2.5 + 3/5.8 + 3/8.11 + ...+ 3/92.95 + 3/95.98
3 = 1 - 1/2 + 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98
= 1 - 1/98
= 97/98 : 3 = 97/98 x 1/3 = (tự tính)
1/2.5+...+1/95.98
=1/2-1/5+1/5-1/8+....1/95+1/98
=1/2-1/98
=24/49
K NHA!!!
Các bạn giúp mik với ạ, mik đang cần gấp lắm ạ.
Bài 1: Tính nhanh:
a) (215/216+3971/3972-1/5).(-9/35+2/5-1/7)
b) 4/2.5+4/5.8+4/8.11+......+4/62.65
Bài 2:Cộng tử và mẫu của phân số 15/29 với cùng số tự nhiên a rồi rút gọn ta được phân số 3/5. Tìm số a.
Cảm ơn các bạn rất nhiều ạ!
a) e chỉ cần nhân chúng lại với nhau = cách tách từng cái ra
b)đặt 4/2.5+4/5.8+4/8.11+......+4/62.65 là S
\(.S=\frac{4}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{62.65}\right)\)
\(S=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{62}-\frac{1}{65}\right)\)
\(S=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{65}\right)\)
\(S=\frac{4}{3}\left(\frac{65}{130}-\frac{2}{130}\right)\)
\(S=\frac{4}{3}\left(\frac{63}{130}\right)\)
\(S=\frac{42}{65}\)
Bài 2 : \(\frac{15+a}{29+a}=\frac{3}{5}\)\(\Leftrightarrow\left(15+a\right)5=\left(29+a\right)3\Leftrightarrow75+5a=87+3a\Leftrightarrow5a-3a=87-75\Rightarrow2a=12\Rightarrow a=6\)
vậy a =6
cái nài từ 2 năm tr rùi h bạn có cần nxko ạ:)))