\(\hept{\begin{cases}x+y+z=6\\xy+yz+zx=11\\xyz=6\end{cases}}\)
1.Giải hệ pt
1)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\\xy+yz+zx=3\\\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}=x\end{cases}}\)
2)\(\hept{\begin{cases}xy+yz+zx=3\\\left(x+y\right)\left(y+z\right)=\sqrt{3}z\left(1+y^2\right)\\\left(y+z\right)\left(z+x\right)=\sqrt{3}x\left(1+z^2\right)\end{cases}}\)
3)\(\hept{\begin{cases}xy+yz+zx=3\\1+x^2\left(y+z\right)+xyz=4y\\1+y^2\left(z+x\right)+xyz=4z\end{cases}}\)
\(\hept{\begin{cases}x+y+z=6\\xy+yz-zx=7\\x^2+y^2+z^2=14\end{cases}}\)
cho mình , mình trả lời cho
Trả lời :
Bn Nguyễn Quyết Thắng trả lời luôn đi, nếu ko trả lời đc thì ko đc bình luận linh tinh nhé !
- Hok tốt !
^_^
Ta có: xy + yz - zx = 7 => -xy - yz + zx = - 7
=> \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2zx=14-2.7=0\)
=> x - y + z = 0
Mà x + y + z = 6
=> 2y = 6 => y = 3
Ta có hệ mới:
\(\hept{\begin{cases}x+z=3\\3x+3z-xz=7\\x^2+z^2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+z=3\\xz=2\\x^2+z^2=5\end{cases}}\)
x; z là nghiệm của phương trình: \(X^2-3X+2=0\Leftrightarrow\orbr{\begin{cases}X=1\\X=2\end{cases}}\)
=> ( x; z) = ( 1; 2) hoặc ( x; z ) = ( 2; 1)
Vậy hệ có 2 nghiệm:
(x; y ; z) = ( 1; 3; 2) hoặc ( 2; 3; 1)
Giải hệ PT sau: \(\hept{\begin{cases}3\sqrt{x}+2\sqrt{y}+\sqrt{z}=\frac{\sqrt{xyz}}{6}\\6\sqrt{xy}+2\sqrt{yz}+3\sqrt{zx}=108+18\sqrt{x+4}+12\sqrt{y+9}+6\sqrt{z+36}\end{cases}}\)
5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)
TT=>VT2>=VP2
6.\(1+\sqrt{y-1}\ge1\)
\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)
=>VT1>=VP1
10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)
chi. cậu trả lời j vào câu hỏi của tớ vậy???
mượn 1 tí thôi tại mai bảo là ghi đại vào đâu đấy
Giải hệ phương trình: \(\hept{\begin{cases}2\left(y+z\right)=yz\\xy+yz+zx=108\\xyz=180\end{cases}}\)
\(\hept{\begin{cases}2\left(y+z\right)=yz\left(1\right)\\xy+yz+zx=108\left(2\right)\\xyz=180\left(3\right)\end{cases}}\)
Thay (1) vào (3) được
\(\text{2x(y+z)=180}\)
\(\Leftrightarrow2\left(xy+xz\right)=180\)
\(\Leftrightarrow xy+xz=90\)
Thay vào (2) ==> yz = 18
Thay yz vào (3) => x = 10
Đến đây thì dễ r. Tự giải nốt nha!
\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\xy+yz+zx=-2\\xyz=-\frac{1}{2}\end{cases}}Tính x^5+y^5+z^5\)Cho các số thực x,y,z thoã mãn
(x+y+z)²=x²+y²+z²+2(xy+yz+zx)
→ x²+y²+z²=(1/2)²-2.(-2)=17/4
(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)
=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz
→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8
(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)
→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2
(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)
→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32
Giải hệ phương trình :
\(\hept{\begin{cases}x+y+z=6\\\frac{xy+yz+zx}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=2\sqrt{2}\end{cases}}\)
em mới học lớp 6. Xin lỗi anh
Giải hệ phương trình:
a)\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{8}{3}\\\frac{yz}{y+z}=\frac{12}{5}\\\frac{zx}{z+x}=\frac{24}{7}\end{cases}}\)
b)\(\hept{\begin{cases}\frac{2x^2}{1+x^2}=y\\\frac{2y^2}{1+y^2}=z\\\frac{2z^2}{1+z^2}=x\end{cases}}\)
c)\(\hept{\begin{cases}\frac{xy}{x+y}=2-z\\\frac{yz}{y+z}=2-x\\\frac{zx}{z+x}=2-y\end{cases}}\)
\(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{cases}}\)
\(\hept{\begin{cases}xy=x+y+1\\yz=y+z+5\\xz=z+x+2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-1\right)\left(y-1\right)=2\left(1\right)\\\left(y-1\right)\left(z-1\right)=6\left(2\right)\\\left(x-1\right)\left(z-1\right)=3\left(3\right)\end{cases}}\)
Nhân (1) , (2) , (3) theo vế được : \(\left[\left(x-1\right)\left(y-1\right)\left(z-1\right)\right]^2=36\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(y-1\right)\left(z-1\right)=6\\\left(x-1\right)\left(y-1\right)\left(z-1\right)=-6\end{cases}}\)
Nếu (x-1)(y-1)(z-1) = 6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)Nếu (x-1)(y-1)(z-1) = -6 , kết hợp với các phương trình (1) , (2) , (3) được \(\hept{\begin{cases}x=0\\y=-1\\z=-2\end{cases}}\)Giải hệ phương trình: \(\hept{\begin{cases}x-\sqrt{yz}=42\\y-\sqrt{zx}=6\\z-\sqrt{xy}=-30\end{cases}}\)