Những câu hỏi liên quan
NN
Xem chi tiết
CK
Xem chi tiết
LC
Xem chi tiết
NH
Xem chi tiết
YN
1 tháng 10 2021 lúc 16:36

Tìm giá trị nhỏ nhất của biểu thức:

\(P=3x^2+31y^2-18xy+6x-14y+2021\)

\(=3[\left(x^2-6xy+9y^2\right)+2\left(x-3y\right)+1]+\left(4y^2+4y+1\right)+2017\)

\(=3[\left(x-3y\right)^2+2\left(x-3y\right)+1]+\left(2y+1\right)^2+2017\)

\(=3\left(x-3y+1\right)^2+\left(2y+1\right)^2+2017\ge2017\)

Vậy \(MinP=2017\) khi \(\hept{\begin{cases}x-3y+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-5}{2}\\y=\frac{-1}{2}\end{cases}}\)

Thực hiện phép tính:

x^2 - x + 1 3x^2 - 2x + 2 3x^4 - 5x^3 + 7x^2 - 4x + 2 - 3x^4 - 3x^3 + 3x^2 -2x^3 + 4x^2 - 4x + 2 - -2x^3 + 2x^2 - 2x 2x^2 - 2x + 2 2x^2 - 2x + 2 0

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
EC
19 tháng 8 2020 lúc 21:58

g) G =  x2 + 6x + 4y2 - 10y + 5

G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25

G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25

Bình luận (0)
 Khách vãng lai đã xóa
EC
19 tháng 8 2020 lúc 22:00

h) H = -2x2 - 6x - 3y2 + 12y - 8

H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5 

H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)

vậy MaxH = 8,5 khi  x = -1,5 và y = 2

Bình luận (0)
 Khách vãng lai đã xóa
LD
19 tháng 8 2020 lúc 22:04

G = x2 + 6x + 4y2 - 10y + 5

G = ( x2 + 6x + 9 ) + ( 4y2 - 10y + 25/4 ) - 41/4

G = ( x + 3 )2 + ( 2y - 5/2 )2 - 41/4

\(\hept{\begin{cases}\left(x+3\right)^2\ge0\forall x\\\left(2y-\frac{5}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+3=0\\2y-\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=\frac{5}{4}\end{cases}}\)

=> MinG = -41/4 <=> x = -3 ; y = 5/4

H = -2x2 - 6x - 3y2 + 12y - 8

H = -2( x2 + 3x + 9/4 ) - 3( y2 - 4y + 4 ) + 17/2

H = -2( x + 3/2 )2 - 3( y - 2 )2 + 17/2

\(\hept{\begin{cases}-2\left(x+\frac{3}{2}\right)^2\le0\forall x\\-3\left(y-2\right)^2\le0\forall y\end{cases}}\Rightarrow-2\left(x+\frac{3}{2}\right)-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{3}{2}=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)

=> MaxH = 17/2 <=> x = -3/2 ; y = 2

I = \(\frac{6}{x^2-6x+30}\)

Để I đạt GTLN => \(x^2-6x+30\)đạt GTNN

Ta có : x2 - 6x + 30 = ( x2 - 6x + 9 ) + 21 = ( x - 3 )2 + 21 ≥ 21 ∀ x

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxI = \(\frac{6}{3^2-6\cdot3+30}=\frac{6}{21}=\frac{2}{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NK
Xem chi tiết
PT
Xem chi tiết
PA
Xem chi tiết
HN
9 tháng 8 2016 lúc 21:24

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

Bình luận (10)