Cho phương trình 3x+19=y2 với x, y là các số nguyên dương
a, Tìm cặp (x;y) là nghiệm của phương trình mà x là số nguyên nhỏ nhất
b,Chứng minh rằng phương trình có nghiệm duy nhất
Cho hệ phương trình: 2 x 2 + x y − y 2 = 0 x 2 − x y − y 2 + 3 x + 7 y + 3 = 0 . Các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là:
A. (2; −2), (3; −3).
B. (−2; 2), (−3; 3).
C. (1; −1), (3; −3).
D. (−1; 1), (−4; 4).
Phương trình 1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y
Trường hợp 1: x = - y thay vào (2) ta được x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3
Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).
Trường hợp 2: 2 x = y thay vào (2) ta được - 5 x 2 + 17 x + 3 = 0 phương trình này không có nghiệm nguyên.
Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).
Đáp án cần chọn là: C
Cho phương trình 3x+19=y2 với x, y là các số nguyên dương
a, Tìm cặp (x;y) là nghiệm của phương trình mà x là số nguyên nhỏ nhất
b,Chứng minh rằng phương trình có nghiệm duy nhất
a)
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | \(\sqrt{22}\)(loại | \(2\sqrt{7}\)(loại) | \(\sqrt{46}\)(loại) | 10(thoả mãn) | \(\sqrt{262}\) |
\(\Rightarrow\left(x,y\right)=\left(4;10\right)\)
Tìm các cặp số (x; y) nguyên dương là nghiệm đúng của phương trình:
\(3x^5-19\left(72x-y\right)^2=240677\)
tìm các cặp số nguyên (x,y) thỏa mãn phương trình sau : x2 - y2= 2017
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)
Tìm cặp số x;y nguyên dương thỏa mãn phương trình 3x5 -19(72x - y)2 = 240677
Cho hệ phương trình 4 x y + 4 x 2 + y 2 + 3 x + y 2 = 7 2 x + 1 x + y = 3 Giả sử x ; y là cặp nghiệm của hệ phương trình. Trong các khẳng định sau, khẳng định đúng là:
tìm cặp số (x;y) nguyên dương của phương trình: \(3x^5-19\left(72x-y\right)^2\) =240677
\(72x-\sqrt{\frac{3x^{^5}-240677}{19}}hay72x+\sqrt{\frac{3x^{^5}-240677}{19}}\). Suy ra: \(x\ge10\). Ghi vào màn hình:
\(A=A+1:B=72A-\sqrt{\frac{3A^{^5}-240677}{19}}:C=72A+\sqrt{\frac{3X^{^5}-240677}{19}}\). Cho A=9, rồi chạy để tìm kết quả.
tìm các cặp số nguyên x, y thỏa mãn: y2(x2-x+1)+xy = 3x-1
Tìm cặp số nguyên dương (x,y) với x là số nguyên dương nhỏ nhất có ba chữ số và thỏa mãn phương trình:
\(3x^3-2y^2+4xy-8x+5128=0\)