Những câu hỏi liên quan
PB
Xem chi tiết
CT
27 tháng 7 2017 lúc 6:26

Ta có A ^ + D ^ = 180 0 ,   A ^ = 2 C ^   = 2 D ^

Suy ra  C ^ = D ^ = 60 0 ,    A ^ = B ^ = 120 0

Bình luận (0)
TP
Xem chi tiết
TP
29 tháng 9 2016 lúc 16:28

Đề bài 4 là :

Cho hình thang cân ABCD(AB//CD , AB<CD),  kể đuòng cao AH và BK 

CMR: DH=CK

 

Bình luận (0)
NK
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 5 2017 lúc 12:27

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó ΔBDE cân

Giải bài 18 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Bình luận (0)
HT
Xem chi tiết
KS
20 tháng 9 2019 lúc 20:48

A B C D E 1 1

a) Hình thang ABEC (AB//CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE     (1)

Theo giả thiết AC = BD     (2)

Từ (1) và (2) suy ra BE = BD do đó  \(\Delta BDE\) cân 

b ) Ta có : AC // BE 

\(\Rightarrow\widehat{C}_1=\widehat{E}\)      ( 3 )

Tam giác BDE cân tại B ( câu a ) nên \(\widehat{D}_1=\widehat{E}\)       ( 4 )

Từ (3 ) và ( 4 ) \(\Rightarrow\widehat{C}_1=\widehat{D}_1\)

Xét \(\Delta ACD\) và \(\Delta BCD\) có AC = CD ( gt )
\(\widehat{C}_1=\widehat{D}_1\left(cmt\right)\)

CD là cạnh chung 

Nên \(\Delta ACD=\Delta BCD\left(c.g.c\right)\)

c ) Vì \(\Delta ACD=\Delta BCD\) ( câu b ) \(\Rightarrow\widehat{ADC}=\widehat{BCD}\)

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

Chúc bạn học tốt !!!

Bình luận (0)
H24
10 tháng 10 2020 lúc 10:53

1) Chứng minh định lí “Hình thang có hai đường chéo bằng nhau là hình thang cân” qua bài toán sau : Cho hình thang ABCD(AB//CD)ABCD(AB//CD) có AC=BDAC=BD. Qua BB kẻ đường thẳng song song với ACAC, cắt đường thẳng DCDC tại EE. Chứng minh rằng: 

a) BDEBDE là tam giác cân. 

b) △ACD=△BDC.△ACD=△BDC.

c) Hình thang ABCDABCD là hình thang cân.

chúc hok tốt , k nha! sai cũng k

Bình luận (0)
 Khách vãng lai đã xóa
KK
Xem chi tiết
PB
Xem chi tiết
PN
Xem chi tiết
NO
10 tháng 2 2016 lúc 0:03

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

Bình luận (0)
OO
10 tháng 2 2016 lúc 6:34

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

Bình luận (0)
ST
10 tháng 2 2016 lúc 6:43

Do AI, DI lần lượt là phân giác BADˆ;ADCˆ→IADˆ=BADˆ2 và IDAˆ=ADCˆ2

Ta có AIDˆ=180o−(IADˆ+IDAˆ)=180oBADˆ+ADCˆ2=180o−180o2=90o

Xét Δ AID vuông tại I có IM là trung tuyến thuộc cạnh huyền AD  MA=MI 

=> Δ AMI cân tại M => MAIˆ=MIAˆ

Do MAIˆ=BAIˆ→BAIˆ=MIAˆ

Mà 2 góc ở vị trí so le trong  MI // AB (1)

Tương tự có NJ // AB (2) 

Lại có MN // AB (3) ( MN là đường trung bình của hình thang ABCD ) 

Từ (1); (2) và (3)=>  M, N, I, J thẳng hàng.

Bình luận (0)
NP
Xem chi tiết