tìm nghiệm nguyên của phương trình
\(\hept{\begin{cases}x^{3^{ }}+y^3+z^3=3\\x+y+z=3\end{cases}}\)
GIẢI GIÚP MÌNH BÀI TOÁN NÀY ĐI Ạ!
Tìm nghiệm nguyên của hệ phương trình
\(\hept{\begin{cases}xy=x+y-z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
Tìm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x,y,z nhỏ nhất)
\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x,y,z nhỏ nhất)
LÀM GIÚP MÌNH Ạ!!! MAI MÌNH PHẢI KIỂM TRA RỒI!!!!
Tìm nghiệm nguyên của hệ phương trình
\(\hept{\begin{cases}xy=x+y-z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
Tìm nghiệm nguyên dương của hệ phương trình
\(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x,y,z nhỏ nhất)
\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x,y,z nhỏ nhất)
câu a)
nhân cả 3 phương trình
ta được
\(x^2y^2z^2=6\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)
Vế trái là 1 số chính phương nên Vp cũng là số chính phương
6 không phải là số chính phương nên
\(\left(x+y-z\right)\left(x-y+z\right)\left(y-x+z\right)\)=6
lập bảng
đặt x+y-z=1 ; x-y+z=2; y-x+z=3 giải ra và tương tự xét các cái còn lại (hơi lâu) nhớ xét thêm cái âm nữa
câu b)
từ hpt =>5y+3=11z+7
<=>\(y=\frac{11z+4}{5}\)>0 với mọi y;z thuộc R
y nguyên dương nên (11z+4)thuộc bội(5) và z_min
=> z=1
=> y=3
=> x =18 (t/m)
câu c)
qua pt (1) =>x=20-2y-3z
thay vao 2) <=> y+5z=23
y;z là nguyên dương mà 5z chia hêt cho 5
=> z={1;2;3;4}
=> y={18;13;8;3}
=> x={-19;-12;-5;2} đoạn này bạn làm từng GT của z nhé
chọn x=2; y=3; z=4 (t/m)
Nếu có sai sót hãy báo lại qua gmail: tiendung230103@gmail.com
Bạn giải nốt giùm mình câu a được ko?
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
ko bít sorry nhaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Tìm nghiệm nguyên của phương trình : \(\hept{\begin{cases}x+y+z=3\\x^3+y^3+z^3=3\end{cases}}\)
Mình đang cần gấp mong mọi người giúp đỡ , cảm ơn !
Ta có: \(\left(x+y+z\right)^3-\left(x^3+y^3+z^3\right)=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=8\)
Đặt \(c=x+y,a=y+z,b=z+x\Rightarrow abc=8\Rightarrow a,b,c\in\left\{\pm1,\pm2,\pm4,\pm8\right\}\)
giả \(x\le y\le z\Rightarrow c\le b\le a\).
Lại có: \(a+b+c=2\left(x+y+z\right)=6\Rightarrow a\ge2\)
- Với a=2 ta có: \(\hept{\begin{cases}b+c=4\\bc=4\end{cases}\Rightarrow b=c=2\Rightarrow x=y=z=1}\)
- Với a=4 ta có: \(\hept{\begin{cases}b+c=2\\bc=2\end{cases}}\)( ko có nghiệm nguyên)
- Với a=8 ta có: \(\hept{\begin{cases}b+c=-2\\bc=1\end{cases}\Rightarrow b=c=-1\Rightarrow x=-5,y=z=4}\)
Vậy hệ pt có 4 nghiệm: \(\left(1;1;1\right),\left(4;4;-5\right),\left(4;-5;4\right),\left(-5;4;4\right)\)
GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN DƯƠNG x,y,z \(\hept{\begin{cases}x^3-y^3-z^3=3xyz\\x^2=2\left(y+z\right)\end{cases}}\)
Kết quả là ra y8 nha bạn
kết quả là y8 đó bạn
Tìm các bộ 3 số nguyên dương (x,y,z) thỏa mãn hệ phương trình :
\(\hept{\begin{cases}x+y=z\\x^3+y^3=z^2\end{cases}}\)
\(\hept{\begin{cases}x+y=z\left(1\right)\\x^3+y^3=z^2\left(2\right)\end{cases}}\)
Ta thế (1) vào (2) : \(\left(x+y\right)^3-3xy\left(x+y\right)=\left(x+y\right)^2\)
<=> \(\left(x+y\right)^2-3xy=\left(x+y\right)\)
Đặt: \(x+y=S;xy=P\)vì x, y nguyên dương => S; P nguyên dương
ĐK để tồn tại nghiệm x, y là: \(S^2\ge4P\)
Có: \(S^2-3P=S\)
=> \(S+3P\ge4P\)<=> \(S\ge P\)
=> \(S^2-S=3P\le3S\)
<=> \(0\le S\le4\)
+) S = 0 loại
+) S = 1 => P = 0 loại
+) S = 2 => P =3/2 loại
+) S = 3 => P = 2
=> \(\hept{\begin{cases}x+y=3\\xy=2\end{cases}}\)<=> x =2; y =1 hoặc x = 1; y =2
=> (x; y; z ) = ( 1; 2; 3) thử lại thỏa mãn
hoặc (x; y; z) = ( 2; 1; 3 ) thử lại thỏa mãn
+) S = 4 => P = 4
=> \(\hept{\begin{cases}x+y=4\\xy=4\end{cases}\Leftrightarrow}x=y=2\)
=> (x; y; z ) = ( 2; 2; 4) thử lại thỏa mãn.
Vậy: có 3 nghiệm là:....
Tìm nghiệm nguyên của hệ phương trình :
\(\hept{\begin{cases}10x^2+5y^2+13z^2=12xy+4xz+6zy\\x^3+y^3+z^3=288\end{cases}}\)
giải hệ phương trình nghiệm nguyêm
\(\hept{\begin{cases}x^3+y^3+z^3=3\\x+y+z=3\end{cases}}\)
Giải Phương trình nghiệm nguyên:
\(x^{2013}+y^{2016}+z^{2019}=2021^{2022}\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2+z^2=8\\|x^3-y^3|+|y^3-z^3|+|z^3-x^3|=32\sqrt{2}\end{cases}}\)