Những câu hỏi liên quan
PX
Xem chi tiết
TD
4 tháng 3 2020 lúc 8:20
Sao bạn gi được phân số vậy
Bình luận (0)
 Khách vãng lai đã xóa
BD
Xem chi tiết
TD
25 tháng 9 2018 lúc 15:15

Bạn tham khảo cách làm ở đây: https://olm.vn/hoi-dap/question/528628.html

Bình luận (0)
FB
Xem chi tiết
H24
6 tháng 3 2019 lúc 17:28

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)

\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{n}\right)\)(đpcm)

Bình luận (0)
CM
6 tháng 3 2019 lúc 18:01

Ta có:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{4.4}+\frac{1}{4.9}+\frac{1}{4.16}+...+\frac{1}{4.n^2}\)

\(=\frac{1}{4}\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{n^2}\right)\)

\(Xét:\)

\(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};\frac{1}{n.n}< \frac{1}{\left(n-1\right).n}...\)

\(Suyra:\)

\(P=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(\Leftrightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Leftrightarrow P< 1-\frac{1}{n}< 1\)

\(\Leftrightarrow\frac{1}{4}.P< 1.\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{n^2}\right)< \frac{1}{4}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)

Bình luận (0)
NM
Xem chi tiết
LT
18 tháng 8 2017 lúc 21:39

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\).... \(+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{2^2}\). ( \(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{n^2}\)) < \(\frac{1}{2^2}\)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).\left(n\right)}\)) = \(\frac{1}{2^2}\)\(1-\frac{1}{n}\)) < \(\frac{1}{2^2}\).1 = \(\frac{1}{4}\)

\(\Rightarrow\)\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(\frac{1}{4}\)

Bình luận (0)
H24
3 tháng 4 2020 lúc 20:39

mình ko hiểu lắm

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
ES
Xem chi tiết
TH
Xem chi tiết
NT
19 tháng 3 2017 lúc 21:32

bn đâu có phải hotgirl đâu

Bình luận (0)
TD
19 tháng 3 2017 lúc 21:51

Ta có:

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)

\(...\)

\(\frac{1}{\left(2n\right)^2}=\frac{1}{2n.2n}< \frac{1}{1n.2n}\)

Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{1n.2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1n}-\frac{1}{2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}+\left(\frac{-1}{4}+\frac{1}{4}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+...-\frac{1}{2n}\)

\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{2n}\)

Bình luận (0)
CT
Xem chi tiết
RM
Xem chi tiết
LH
8 tháng 7 2016 lúc 12:07

Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

Có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)

\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)

Bình luận (0)
TT
Xem chi tiết
H24
4 tháng 5 2016 lúc 20:36

Đặt A= \(\frac{1}{4^2}\) + \(\frac{1}{6^2}\) + \(\frac{1}{8^2}\) +...+ \(\frac{1}{\left(2n\right)^2}\)

A= \(\frac{1}{2^2.2^2}\) + \(\frac{1}{2^2.3^2}\) +...+ \(\frac{1}{2^2.n^2}\)

A= \(\frac{1}{2^2}\).( \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\) + ...+ \(\frac{1}{n^2}\))

A< \(\frac{1}{2^2}\) . ( \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) +...+ \(\frac{1}{\left(n-1\right)n}\)

A< \(\frac{1}{4}\) . ( 1-\(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) +...+ \(\frac{1}{n-1}\) - \(\frac{1}{n}\) )

A< \(\frac{1}{4}\) . (1-\(\frac{1}{n}\)) = \(\frac{1}{4}\) - \(\frac{1}{4n}\) <\(\frac{1}{4}\) => A <\(\frac{1}{4}\)

Bình luận (0)