tính nhanh : 66.65-65.64+64.63-63.62+....+4.3-3.2+2.1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tính
51.2:3.2-4.3 *[3-2.1]-2.68
#)Thắc mắc :
Dấu ''.'' là dấu nhân hay phẩy thế ?
Trả lời :
\(51,2:3,2-4,3.\left(3-2,1\right)-2,68\)
\(=9,45\)
Hok_Tốt
#Thiên_Hy
51,2 : 3,2 - 4,3 x [ 3 - 2,1 ] - 2,68
= 16 - 4,3 x 0,9 - 2,68
= 16 - 3,87 - 2,68
= 9,45
tính P=-1+1/2.1+1/3.2+1/4.3+..........+1/2018.2017+1/2018
\(P=\)\(-1+\frac{1}{2.1}+\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{2018.2017}+\frac{1}{2018}\)
\(P=-1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018}\)
\(P=-1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}\)
\(P=-1+1-\frac{1}{2018}+\frac{1}{2018}\)
\(P=0\)
\(P=-1+\frac{1}{2.1}+\frac{1}{3.2}+\frac{1}{4.3}+...+\frac{1}{2018.2017}+\frac{1}{2018}\)
\(P=-1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018}\)
\(P=-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}\)
P = 0
TINH NHANH :
A= ( -1/2)-(-3/5)+(-1/9)+1/131-(-2/7)+4/35-7/18
B=1/99-1/99.98-1/98.97-...-1/4.3-1/3.2-1/2.1
51.2 : 3.2 - 4.3 × ( 3 _ 2.1) - 2.68 =
Chỉ cho mình gấp nhé
Cảm ơn
Cho:
P=\(\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-....................-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
Tính P+\(\frac{1997}{1999}\)
\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)
\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)
\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)
\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)
\(=\frac{-1}{2000}\)
P= \(\frac{1}{2000.1999}\)- (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)
= \(\frac{-1997}{1999}-\frac{1}{2000}\)
=) P + \(\frac{1997}{1999}\)= \(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)
thằng kia copy bài mình đó đừng tk nó
Tính nhanh
2.1+4.3+6.5+8.7+.....+19.7+21.9
tính nhanh D=1/2000.1999-1/1999.1998-......-1/3.2-1/2.1
Mình đồng tình với Phạm Ngọc Thạch
Bài 1 Rút gọn
a) \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-.....-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
Ta có : \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-......-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2013.2014}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=1-\left(1-\frac{1}{2014}\right)\)
\(=1-1+\frac{1}{2014}\)
\(=\frac{1}{2014}\)
\(a,1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=1-\left(1-\frac{1}{2014}\right)\)
\(=1-1+\frac{1}{2014}\)
\(=\frac{1}{2014}\)
tính nhanh D=1/2000.1999-1/1999.1998-......-1/3.2-1/2.1.