Chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
1: Chứng minh rằng: tích 2 số tự nhiên liên tiếp chia hết cho 2
2: Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 6
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
1.trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2=> tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
2.trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3)=1=>tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3=6
a) chứng minh rằng trong 3 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 , và một số chia hết cho 3
b) chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
Chứng minh rằng:
a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6
thanks
a. một trong hai số là chẵn thì tích của chúng sẽ là một số chẵn.
mk làm được mỗi câu này. sai thì thôi
a)trong 2 số tự nhiên liên tiếp,1 số chia hết cho 2.
vậy:tích 2 số tự nhiên liên tiếp chia hết cho 2.
b)trong 3 số tự nhiên liên tiếp,có ít nhất 1 số chia hết cho 2 và chia hết cho 3.
vậy:tích 3 số tự nhiên liên tiếp chia hết cho 6.
ko hiêủ chỗ nào thì chat vs mik.k và kb nha!
a) chứng minh rằng tich của 2 số tự nhiên liên tiếp chia hết cho 2
b) chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 3
a)Ta có:a.(a+1)chia hết cho 2
Giả sử a là một số chẵn
=>a+1 là một số lẻ
Vì a.(a+1)là một số chẵn =>Tích 2 số tự nhiên liên tiếp chia hết cho 2
b)tương tự
Chứng minh rằng tích của 2 số tự nhiên liên tiếp chia hết cho 2
Chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 3
Help help
Chia n thành 2 loại : Số chẵn (2k) ; Số lẻ (2k + 1)
Rồi thế vô
tích hai số t ự nhiên liên tieeos trong đó có 1 số chẵn số lẻ suy ra chẵn nhân lẻ =chẵn (dpcm)
chứng minh rằng tích 3 số tự nhiên và 3 số nguyên liên tiếp chia hết cho 6
tương tự với tích 5 số tự nhiên và 5 số nguyên liên liên tiếp chia hết cho 120
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
Chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6.
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
Viết tắc của ƯCLN(2,3) = 1 đấy bạn,thầy mình cũng dạy
Chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên liên tiếp bất kì là \(x\left(x+1\right)\left(x+2\right)\)
Vì x và x +1 là 2 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 2
\(\Rightarrow x\left(x+1\right)⋮2\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮2\)
Vì x ; x +1 ; x + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)
Mà (2;3) = 1
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮2.3\)
\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮6\) ( đpcm )
ba số liên tiếp thì có một số chia hết cho 2 vfa một số chia hết 3=> tích của chúng=6=> chia hết cho 6
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
a) Câu hỏi của Hoàng Như Anh - Toán lớp 7 - Học toán với OnlineMath
b) chứng tỏ tích của 3 số tự nhiên liên tiếp chia hết cho 6? | Yahoo Hỏi & Đáp