Tìm số nguyên tố p sao cho 3p + 2 là một số tự nhiên chẵn,(lưu ý: Có trình bày cách tim )
Tìm số nguyên tố p sao cho 3p + 2 là một số tự nhiên chẵn.
Đặt 3p+2=A, ta có:
A là 1 số tự nhiên chẵn
=>\(A⋮2\)
=>3p+2 \(⋮\)2
Vì 2\(⋮\)2 => 3p\(⋮\)2
=>3p là số chẵn
Vì 3 là số lẻ nên p phải là số chẵn, mà p lại là số nguyên tố nên p chỉ có thể là 2.
Vậy để 3p+2 là số chẵn thì p=2
CHÚC BẠN HỌC TỐT!!!^^
Tìm số nguyên tố P sao cho 3p+2 là một số tự nhiên chẵn
Tìm số nguyên tố P sao cho 3P+7 là số nguyên tố
(Ghi cách trình bày giúp mình với)
1. Tìm điều kiện số tự nhiên a để biểu thức 3x + 2/x là số nguyên tố??
2.Tìm tất cả các số nguyên tố p sao cho các số 2p + 5, 4p + M cũng là số nguyên tố???
Có cả cách trình bày.Ai đúng và có cách trình bày thì mình sẽ tích nhiều cho
Tìm số tự nhiên có 3 chữ số giống nhau sao cho chỉ có đúng 2 ước nguyên tố
( trình bày cách giải đàng hoàng nha! )
Tìm số tự nhiên n nhỏ nhất sao cho:
n ; n+ 2 ; n+ 6 là các số nguyên tố
Trình bày cả cách giải ra giúp mình nhé
Tìm số tự nhiên n nhỏ nhất sao cho:
n ; n+ 2 ; n+ 6 là các số nguyên tố
Trình bày cả cách giải ra giúp mình nhé
Ta có : n ; n + 2 ; n + 6 là số nguyên tố
=> n = 1
Ta có : 1 + 2 = 3 đúng
1 + 6 = 7 đúng
Vậy n = 1
Ta có : n ; n + 2 ; n + 6 là số nguyên tố
=> n = 1
Ta có : 1 + 2 = 3 đúng
1 + 6 = 7 đúng
Vậy n = 1
n=5
n+2=5+2=7
n+6=5+6=11
=> n bằng 5 là số nguyên tố nhỏ nhất thỏa mãn điều kiện trên
Bài 1:Tìm số tự nhiên n sao cho 2^n+1 và 2^n-1 là số nguyên tố.
Bài 2:Tìm 3 số tự nhiên lẻ liên tiếp đồng thời là số nguyên tố.
Bài 3:Cho p là số nguyên tố ; p>3; q là số nguyên tố; q>3 và p>q. Chứng tỏ rằng (p^2-q^2) chia hết cho 24.
TRÌNH BÀY BÀI GIẢI GIÚP MÌNH NHA
1.cho n=2.3.4.5.6.7 có
chứng tỏ 6 số tự nhiên liên tiếp sau đều là hợp số
2 .tìm n thuộc N sao cho n+8 chia hết cho n+1
3.tìm số tự nhiên p sao cho
a, 3p+5 là số nguyên tố
b,p+8 và p+10 là số nguyn tố
Tìm tất cả các số tự nhiên n sao cho n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố
Trình bày cách giải ra nhé
Trước hết, ta chứng minh rằng với mọi số n lớn hơn hoặc bằng 5, điều kiện của đề bài không thỏa mãn.
Thật vậy, với \(n\ge5\), ta có:
+ Nếu n = 5k thì n + 15 chia hết 5. Vậy n + 15 là hợp số.
+ Nếu n = 5k + 1 thì n + 9 chia hết cho 5. Vậy n + 9 là hợp số.
+ Nếu n = 5k + 2 thì n + 3 chia hết cho 5. Vậy n + 3 là hợp số.
+ Nếu n = 5k + 3 thì n + 7 chia hết cho 5. Vậy n + 7 là hợp số.
+ Nếu n = 5k + 4 thì n + 1 chia hết cho 5. Vậy n + 1 là hợp số.
Vậy n < 5.
Để n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố thì n phải là số chẵn. Vì nếu n là số lẻ thì các số trên là số chẵn lớn hơn 2, và là hợp số.
Vậy n = 2 hoặc n = 4.
Với n = 2, ta thấy ngay n + 7 = 2 + 7 = 9, là hợp số.
Với n = 4, ta có các số 5, 7, 11, 13, 17, 19 đều là số nguyên tố.
Vậy số cần tìm là n = 4.
Thử n đến 3 không thỏa mãn
* n=4 thì các số là các số nguyên tố
*Xét n >4 thì các số đó đều lớn hơn 5
Xét các số dư khi chia n cho 5
+ Dư 1 thì n+ 9\(⋮\)5n+9\(⋮\)5
+Dư 2 thì n+13 \(⋮\)5n+13\(⋮\)5
+ Dư 3 thì n+7 \(⋮\)5n+7\(⋮\)5
+ Dư 4 thì n+1 \(⋮\)5n+1\(⋮\)5
+ Dư 0 thì n+15\(⋮\)5n+15\(⋮\)5
Không TM trường hợp nào cả
=>n = 4 là giá trị cần tìm
Ta có: Xét:
+n=0n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+
Đúng 0
Bình luận (0)